【模板】2-SAT
题目大意:给定 N 个点的 M 条约束,约束形式为:\(a_i \lor a_j = 1\)。
题解:拆点什么的就不说了,在求出一组解的时候,考虑到 Tarjan 找环的过程中,scc 染色是按照拓扑序的逆序来进行的,即:拓扑排序中最后被删除的节点的 cor 值最小。根据这个性质,在一定有解的情况下,对于任意一个 \(a_i\),应该取拓扑序大的值(Tarjan 染色小的值)作为最终结果,因为缩点之后的 DAG 上的边依然是选了前一个scc 就必然选与之相连的 scc。
代码如下
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define all(x) x.begin(),x.end()
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int inf=0x3f3f3f3f;
const int maxn=2e6+10;
inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
int n,m;
vector<int> G[maxn];
int dfs_clk,dfn[maxn],low[maxn],stk[maxn],top,in[maxn];
int scc,cor[maxn];
void tarjan(int u){
dfn[u]=low[u]=++dfs_clk;
stk[++top]=u,in[u]=1;
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(!dfn[v])tarjan(v),low[u]=min(low[u],low[v]);
else if(in[v])low[u]=min(dfn[v],low[u]);
}
if(dfn[u]==low[u]){
++scc;int v;
do{
v=stk[top--],in[v]=0;
cor[v]=scc;
}while(u!=v);
}
}
void read_and_parse(){
n=read(),m=read();
while(m--){
int i=read(),a=read(),j=read(),b=read();
if(a&&b)G[i].pb(j+n),G[j].pb(i+n);
else if(a&&!b)G[i].pb(j),G[j+n].pb(i+n);
else if(!a&&b)G[i+n].pb(j+n),G[j].pb(i);
else G[i+n].pb(j),G[j+n].pb(i);
}
}
void solve(){
for(int i=1;i<=n<<1;i++)if(!dfn[i])tarjan(i);
for(int i=1;i<=n;i++)if(cor[i]==cor[i+n])return (void)puts("IMPOSSIBLE");
puts("POSSIBLE");
for(int i=1;i<=n;i++)printf("%d ",!(cor[i]<cor[i+n]));
puts("");
}
int main(){
read_and_parse();
solve();
return 0;
}
【模板】2-SAT的更多相关文章
- 2 - sat 模板(自用)
2-sat一个变量两种状态符合条件的状态建边找强连通,两两成立1 - n 为第一状态(n + 1) - (n + n) 为第二状态 例题模板 链接一 POJ 3207 Ikki's Story IV ...
- TwoSAT算法模板
该模板来自大白书 [解释] 给多个语句,每个语句为“ Xi为真(假) 或者 Xj为真(假)” 每个变量和拆成两个点 2*i为假, 2*i+1为真 “Xi为真 或 Xj为真” 等价于 “Xi为假 –& ...
- C++ 模板基础
我们学习使用C++,肯定都要了解模板这个概念.就我自己的理解,模板其实就是为复用而生,模板就是实现代码复用机制的一种工具,它可以实现类型参数化,即把类型定义为参数:进而实现了真正的代码可重用性.模版可 ...
- (模板)poj2947(高斯消元法解同余方程组)
题目链接:https://vjudge.net/problem/POJ-2947 题意:转换题意后就是已知m个同余方程,求n个变量. 思路: 值得学习的是这个模板里消元用到lcm的那一块.注意题目输出 ...
- 虚拟化技术之kvm镜像模板制作工具virt-sysprep
virt-sysprep这个工具来自libguest-tools这个工具包,它能够把kvm虚拟机对应的磁盘文件做成一个模板,后续我们启动虚拟机就可以基于这个镜像模板启动:什么是镜像模板呢?所谓模板就是 ...
- Jade模板引擎让你飞
写在前面:现在jade改名成pug了 一.安装 npm install jade 二.基本使用 1.简单使用 p hello jade! 渲染后: <p>hello jade!</p ...
- ABP入门系列(2)——通过模板创建MAP版本项目
一.从官网创建模板项目 进入官网下载模板项目 依次按下图选择: 输入验证码开始下载 下载提示: 二.启动项目 使用VS2015打开项目,还原Nuget包: 设置以Web结尾的项目,设置为启动项目: 打 ...
- CMS模板应用调研问卷
截止目前,已经有数十家网站与我们合作,进行了MIP化改造,在搜索结果页也能看到"闪电标"的出现.除了改造方面的问题,MIP项目组被问到最多的就是:我用了wordpress,我用了织 ...
- PHP-自定义模板-学习笔记
1. 开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2. 整体架构图 ...
- 【原创分享·微信支付】C# MVC 微信支付之微信模板消息推送
微信支付之微信模板消息推送 今天我要跟大家分享的是“模板消息”的推送,这玩意呢,你说用途嘛,那还是真真的牛逼呐.原因在哪?就是因为它是依赖微信生存的呀,所以他能不 ...
随机推荐
- 2.请介绍一下List和ArrayList的区别,ArrayList和HashSet区别
第一问: List是接口,ArrayList实现了List接口. 第二问: ArrayList实现了List接口,HashSet实现了Set接口,List和Set都是继承Collection接口. A ...
- js中表达式 >>> 0 浅析
zepto源码的Array.prototype.reduce有一行 len = t.length >>> 0 当时就很疑惑,知道 >>是移位,那>>>又 ...
- saltstack二
配置管理 haproxy的安装部署 haproxy各版本安装包下载路径https://www.haproxy.org/download/1.6/src/,跳转地址为http,改为https即可 创建相 ...
- InnoDB: Error: Table "mysql"."innodb_table_stats" not found.
问题:打开mysql错误日志时发现大量的如下错误 Error: Table "mysql"."innodb_table_stats" not found. In ...
- CMD & Git Shell & Bash Shell
CMD & Git Shell & Bash Shell https://mvdan.cc/sh/cmd/shfmt PC
- django学习自修第一天【简介】
1. MVC框架 MVC框架的核心思想是解耦,降低各功能之间的耦合性,方便重构代码 (1)低耦合,高内聚 (2)高可扩展性 (3)向后兼容 2. MVT框架 V(视图):核心处理,接受请求,调用模型获 ...
- PHP人工智能库
PHP虽然不是人工智能语言,但做人工智能理论上没问题,下面本人整理了一些PHP人工智能库.1.NLPTools(http://php-nlp-tools.com/)NLPTools是一个PHP自然语言 ...
- Apache ab 单测 分布式
使用synchronized 处理并发 缺点:无法做到细粒度控制 只适合单点的情况 使用Redis作为分布式锁 setnx命令 设计模式 :使用 !setnx 加锁 getset命令
- Jetson TX1 install py-faster-rcnn
Install py-faster-rcnn following the official version https://github.com/rbgirshick/py-faster-rcnn ...
- .net core compatibility windows & windows compatible Linux
Who is this package for? This package is meant for developers that need to port existing .NET Framew ...