agc032
T1 题意:你要进行n次操作,第i次选择一个数k∈[1,i],并插入到当前序列的第k个位置。给定目标序列,输出操作序列。100,2s。
解:冷静分析一波,我们可以从后往前确定操作序列。这样每次确定一个操作之后就会删除一个数。
如果有ai = i的位置那我们显然可以把这个i操作放到操作序列最后。如果有多个这样的i,从后往前处理。
#include <bits/stdc++.h>
const int N = ;
int a[N], b[N];
int main() {
int n;
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d", &b[i]);
}
for(int i = n; i >= ; i--) {
bool f = ;
for(int j = i; j >= ; j--) {
if(b[j] > j) break;
if(b[j] == j) {
a[i] = j;
//printf("a %d = %d \n", i, j);
for(int k = j; k < i; k++) {
b[k] = b[k + ];
}
f = ;
break;
}
}
if(!f) {
printf("-1");
return ;
}
}
for(int i = ; i <= n; i++) {
printf("%d\n", a[i]);
}
return ;
}
AC代码
T2 题意:构建一个n个点的简单无向连通图,使得每个点的邻居的编号之和相等。100,2s。
解:先玩一下3和4的时候,发现是一张完全二分图,且左右部的节点编号之和相等。
这启发我们把这些点分成k份,每份的编号之和相同。然后每个点向其他所有不是同类的点连边。
n为偶数的时候就是首尾配对,和为n + 1,n为奇数的时候提出n来然后首尾配对,和为n。
#include <bits/stdc++.h>
const int N = ;
int vis[N];
int main() {
int n, cnt1 = ;
scanf("%d", &n);
int t = (n + ) * n / ;
if(t & ) {
if((n & ) == ) {
printf("%d\n", n * (n - ) / );
for(int i = ; i <= n; i++) {
for(int j = i + ; j <= n; j++) {
if(i + j != n + ) {
printf("%d %d \n", i, j);
}
}
}
return ;
}
else {
printf("%d \n", (n - ) * (n - ) / + n - );
for(int i = ; i < n; i++) {
printf("%d %d \n", i, n);
}
for(int i = ; i < n; i++) {
for(int j = i + ; j < n; j++) {
if(i + j != n) {
printf("%d %d \n", i, j);
}
}
}
}
return ;
}
t /= ;
for(int i = n; i >= && t; i--) {
if(t >= i) {
t -= i;
vis[i] = ;
cnt1++;
}
}
printf("%d\n", cnt1 * (n - cnt1));
for(int i = ; i <= n; i++) {
if(vis[i]) {
for(int j = ; j <= n; j++) {
if(!vis[j]) {
printf("%d %d \n", i, j);
}
}
}
}
return ;
}
AC代码
T3 题意:给定简单无向连通图,问是否能把所有边分成三个环。点可以重复经过。10w,10w,2s。
解:这TM居然是分类讨论...首先有度数为奇的肯定不行。然后只要排除一种情况:总环数 < 3即可。
因为如果环比较多,任意两个相邻(共用某一点)的环肯定能合二为一的......
如果有某个点的度数大于4,肯定合法。如果没有点的度数大于2,肯定不合法。
当点的度数最大为4的时候,可以把其他所有度数为2的点缩成某些边。
如果只有一个点的度数为4,相当于该点有两条自环,不行。
如果有两个点的度数为4,有一种特殊情况不合法:

其余情况和有大于2个点的度数等于4的时候,均合法。
#include <bits/stdc++.h>
const int N = ;
struct Edge {
int nex, v;
}edge[N << ]; int tp = ;
int e[N], n, m, in[N], vis[N], stk[N], top, cnt, A, B;
inline void add(int x, int y) {
tp++;
edge[tp].v = y;
edge[tp].nex = e[x];
e[x] = tp;
return;
}
void DFS(int x, int f) {
if(f && x == A) {
puts("Yes");
exit();
}
else if(x == B) return;
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(y != f) DFS(y, x);
}
return;
}
int main() {
scanf("%d%d", &n, &m);
for(int i = , x, y; i <= m; i++) {
scanf("%d%d", &x, &y);
add(x, y);
add(y, x);
in[x]++;
in[y]++;
}
int largeIn = , cnt = ;
for(int i = ; i <= n; i++) {
if(in[i] & ) {
puts("No");
return ;
}
if(largeIn < in[i]) {
largeIn = in[i];
cnt = ;
}
else if(largeIn == in[i]) {
cnt++;
}
}
if(largeIn > ) {
puts("Yes");
return ;
}
else if(largeIn == && cnt > ) {
puts("Yes");
return ;
}
else if(largeIn == && cnt == ) {
for(int i = ; i <= n; i++) {
if(in[i] == ) {
if(!A) A = i;
else {
B = i;
break;
}
}
}
DFS(A, );
}
puts("No");
return ;
}
AC代码
T4 题意:给定一个排列。你可以花费A使一个区间最左边的数跑到最右边,其余区间内的数左移。也可以花费B来进行逆操作。求使其变成升序的最小代价。5000,2s。
解:神仙DP。
显然有个n3的区间DP是设f[l][r]表示把[l, r]这一段排序。转移的时候一段区间可以由两个子区间拼起来,也可以找到其中最值然后挪一次。
正解全然不同......我们只注重这些元素的相对位置,也就是说下标可以为实数。
然后考虑每次操作等价于把一个数往旁边挪,别的数不变。
然后考虑最优解肯定是若干个数往左,若干个数往右,若干个数不动。我们以那些不动的数来DP。
设f[i][j]表示值域前i个数全部排好序了,且最大的那个不动的数是j,且比j大的数全部聚集在(j, j + 1)这一段的最小代价。
考虑f[i][j]是怎么得来的:如果当前这个数i初始时在j的左边,那么一定要往右移(i比j大)。反之一定要往左移(聚集到(j, j + 1)中)。
然后我们忽了一种转移:i在j右边的时候也可以不移动!此时f[i][i] = f[i - 1][j]
然后就完事了。
#include <bits/stdc++.h> typedef long long LL;
const int N = ; LL f[N][N];
int a[N], p[N]; int main() { int n;
LL A, B;
scanf("%d%lld%lld", &n, &A, &B);
for(int i = ; i <= n; i++) {
scanf("%d", &a[i]);
p[a[i]] = i;
}
memset(f, 0x3f, sizeof(f));
/// DP
f[][] = ;
for(int i = ; i <= n; i++) {
for(int j = ; j < i; j++) {
/// f[i][j]
/*for(int k = 0; k < i; k++) {
/// f[i][j] <- f[i - 1][k]
if(p[i] < p[k]) {
f[i][j] = std::min(f[i][j], f[i - 1][k] + A);
}
else {
f[i][j] = std::min(f[i][j], f[i - 1][k] + B);
}
}*/
if(p[i] < p[j]) {
f[i][j] = f[i - ][j] + A;
}
else {
f[i][j] = f[i - ][j] + B;
f[i][i] = std::min(f[i][i], f[i - ][j]);
}
}
/*for(int j = 0; j <= i; j++) {
printf("%3lld ", f[i][j]);
}
puts("");*/
} LL ans = 4e18;
for(int i = ; i <= n; i++) {
ans = std::min(ans, f[n][i]);
}
printf("%lld\n", ans);
return ;
}
AC代码
T5 题意:给定序列,把它们两两配对使得每一对的和 % MO的最大值最小。10w,1e9,2s。
解:排序之后考虑最优方案长什么样。
然后发现它们一定长这样...因为不满足这样的方案调整成这样一定更优。


枚举分界点是n2的,但是发现分界点越靠左越优,于是二分这个分界点,使其满足条件(左边的和全小于MO,右边全不小于MO),然后一次得出答案。
单调性:就考虑若分界点在a和b都满足条件,那么a,b之间的任一点也满足条件。比b小所以左边满足,比a大所以右边满足。
#include <bits/stdc++.h>
const int N = ;
int a[N], MO, n;
inline bool check(int p) {
int l = p + , r = n;
while(l < r) {
if(a[l] + a[r] < MO) return false;
l++;
r--;
}
return true;
}
int main() {
scanf("%d%d", &n, &MO);
n <<= ;
for(int i = ; i <= n; i++) {
scanf("%d", &a[i]);
}
std::sort(a + , a + n + );
int l = n, r = n; /// [1, l] (l, r]
while(a[n] + a[l - ] >= MO && l >= ) l -= ;
while(a[] + a[r] >= MO && r >= ) r -= ;
l /= ;
r /= ;
while(l < r) {
int mid = (l + r) >> ;
if(check(mid * )) r = mid;
else l = mid + ;
}
int p = r * ;
int ans = ;
l = , r = p;
while(l < r) {
ans = std::max(ans, a[l] + a[r]);
l++;
r--;
}
l = p + , r = n;
while(l < r) {
ans = std::max(ans, (a[l] + a[r]) % MO);
l++;
r--;
}
printf("%d\n", ans);
return ;
}
AC代码
agc032的更多相关文章
- 【AtCoder】AGC032
AGC032 A - Limited Insertion 这题就是从后面找一个最靠后而且当前可以放的,可以放的条件是它的前面正好放了它的数值-1个数 如果不符合条件就退出 #include <b ...
- 【Atcoder】 AGC032赛后总结
比赛前 emmm,今天是场AGC,想起上次我的惨痛经历(B都不会),这次估计要凉,可能A都不会Flag1 比赛中 看场看了波\(A\),咦,这不是很呆的题目吗?倒着扫一遍就好了. 然后切了就开始看B, ...
- AtCoder整理(持续更新中……)
做了那么久的atcoder觉得自己的题解发的很乱 给有想和我一起交流atcoder题目(或者指出我做法的很菜)(或者指责我为什么整场比赛只会抄题解)的同学一个索引的机会??? 于是写了个爬虫爬了下 A ...
- 【做题记录】AtCoder AGC做题记录
做一下AtCoder的AGC锻炼一下思维吧 目前已做题数: 75 总共题数: 239 每一场比赛后面的字母是做完的题,括号里是写完题解的题 AGC001: ABCDEF (DEF) AGC002: A ...
- AtCoder AGC032E Modulo Pairing (二分、贪心与结论)
题目链接 https://atcoder.jp/contests/agc032/tasks/agc032_e 题解 猜结论好题. 结论是: 按\(a_i\)从小到大排序之后,一定存在一种最优解,使得以 ...
- AtCoder AGC032D Rotation Sort (DP)
题目链接 https://atcoder.jp/contests/agc032/tasks/agc032_d 题解 又是一道神仙题啊啊啊啊...atcoder题真的做不来啊QAQ 第一步又是神仙转化: ...
随机推荐
- 移动APP用例设计中的关键点(转载)
http://www.51testing.com/html/52/n-4421752.html 在测试工作中我们需要不断的总结和储备自己的知识和经验,譬如具备特定属性.环境以及场景,如:PC,手机,智 ...
- QTP 自动化测试桌面程序--笔记(关闭 启动程序脚本) 、安装
0 安装qtp .exe 文件 安装 插件文件(如delph) 1 关闭 启动程序: 将要操作的程序-存入localdatatable中 设置 迭代一次 rem SystemUtil.ClosePro ...
- vs code軟件操作
https://www.imooc.com/article/39349 https://www.html.cn/archives/8144
- LODOP字体不识别 英文字母连起来 引号不正常
打印超文本的时候,有时候会发现html中设置的css样式显示不正常,字体根本不是设置的字体,这种情况有可能是:1.该操作系统没有安装自己指定的那种字体,那么没有安装自然就不能显示设置的字体.2.该操作 ...
- Windows 10 安装PHP Manager 失败的解决办法
首先安装.NET 2.0和.NET 3.5, 在 控制面板----程序----启用或关闭Windows功能 里面 然后修改注册表:HKLM/System/CCS/Services/W3SVC/P ...
- React 学习(一) ---- React Element /组件/JSX
学习React的时候,你可能听到最多的就是要先学习webpack, babel,要先学会配置然后才能学react 等等,一堆的配置就把我们吓着了,根本就没有心情就学习react了.其实在最开始学习re ...
- gym-101350D
题意:给你一个数组,你每次可以是其中一个数减一,数组其他元素加一,问是否能够相等,这个数组的所有元素. 解题思路:将数组从小到大排序,只要后一项减去当前项的值是奇数就行了. 代码: #include& ...
- Nginx 防盗链 secure_link 模块
L:76 需要通过 --with-http_secure_link_module 编译进Nginx secure_link 指令 Syntax: secure_link expression; Def ...
- Facebook开源最先进的语音系统wav2letter++
最近,Facebook AI Research(FAIR)宣布了第一个全收敛语音识别工具包wav2letter++.该系统基于完全卷积方法进行语音识别,训练语音识别端到端神经网络的速度是其他框架的两倍 ...
- linux用户、文件权限相关命令
root 现代操作系统一般属于多用户的操作系统,也就是说,同一台机器可以为多个用户建立账户,一般这些用户都是为普通用户,这些普通用户能同时登录这台计算机,计算机对这些用户分配一定的资源. 普通用户在所 ...