【XSY2667】摧毁图状树 贪心 堆 DFS序 线段树
题目大意
给你一棵有根树,有\(n\)个点。还有一个参数\(k\)。你每次要删除一条长度为\(k\)(\(k\)个点)的祖先-后代链,问你最少几次删完。现在有\(q\)个询问,每次给你一个\(k\),问你答案是多少。
\(n\leq {10}^5,k\leq {10}^9\)
题解
设\(l\)为这棵树的叶子个数,显然当\(k>\)树的深度时答案都是\(l\)。
下面要证明:答案是\(O(l+\frac{n-l}{k})\)的。
我们从下往上贪心,每次选择一个未被覆盖的深度最深的点,覆盖这个点网上的一条链。我们把这些选择的点称为关键点。把所有关键点到父亲的连边断开。
包含根的那个连通块和叶子节点的贡献是\(O(l)\)的。
对于其他连通块,显然深度最深的点到关键点的距离是\(k-1\),所以连通块的大小不小于\(k\)。又因为每个连通块只有一个关键点,所以这部分的贡献是\(O(\frac{n-l}{k})\)的。
对于每个\(k\),从叶子节点的上一层关键点开始暴力做就行了。查询一个点是否被覆盖就用DFS序+线段树(查询这个点的子树深度最浅的点深度是多少)。
时间复杂度:\(O(n\log^2 n)\)(调和级数求和再加上数据结构的\(\log\))
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
#include<queue>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
void put(int x)
{
if(!x)
{
putchar('0');
return;
}
static int c[20];
int t=0;
while(x)
{
c[++t]=x%10;
x/=10;
}
while(t)
putchar(c[t--]+'0');
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
vector<int> g[100010];
int f[100010][20];
int st[100010];
int ed[100010];
int d[100010];
int ti;
int maxd;
int leaves;
int s[100010];
vector<int> c[100010];
void dfs(int x,int fa,int dep)
{
maxd=max(maxd,dep);
f[x][0]=fa;
d[x]=dep;
st[x]=++ti;
int i;
for(i=1;i<=17;i++)
f[x][i]=f[f[x][i-1]][i-1];
int num=0;
s[x]=0x7fffffff;
for(auto v:g[x])
if(v!=fa)
{
dfs(v,x,dep+1);
s[x]=min(s[x],s[v]+1);
num++;
}
if(!num)
{
s[x]=0;
leaves++;
}
ed[x]=ti;
}
int jump(int x,int d)
{
int i;
for(i=17;i>=0;i--)
if(d&(1<<i))
x=f[x][i];
return x;
}
namespace seg
{
int ls[200010];
int rs[200010];
int s[200010];
int rt,n;
void add(int &p,int x,int v,int l,int r)
{
if(!p)
{
p=++n;
ls[p]=rs[p]=0;
s[p]=0x7fffffff;
}
if(l==r)
{
s[p]=v;
return;
}
int mid=(l+r)>>1;
if(x<=mid)
add(ls[p],x,v,l,mid);
else
add(rs[p],x,v,mid+1,r);
s[p]=0x7fffffff;
if(ls[p])
upmin(s[p],s[ls[p]]);
if(rs[p])
upmin(s[p],s[rs[p]]);
}
int query(int p,int L,int R,int l,int r)
{
if(!p)
return 0x7fffffff;
if(L<=l&&R>=r)
return s[p];
int res=0x7fffffff;
int mid=(l+r)>>1;
if(L<=mid)
upmin(res,query(ls[p],L,R,l,mid));
if(R>mid)
upmin(res,query(rs[p],L,R,mid+1,r));
return res;
}
}
struct cmp
{
int operator ()(int a,int b) const
{
return d[a]<d[b];
}
};
priority_queue<int,vector<int>,cmp> q;
int ans[100010];
int k;
int main()
{
open("a");
int n;
scanf("%d",&n);
int i,x,y;
for(i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
g[x].push_back(y);
g[y].push_back(x);
}
dfs(1,0,1);
for(i=1;i<=n;i++)
c[s[i]].push_back(i);
for(i=1;i<maxd;i++)
{
k=i;
int res=leaves;
for(auto v:c[i])
q.push(v);
seg::rt=seg::n=0;
while(!q.empty())
{
x=q.top();
q.pop();
if(s[x]<=k-1)
continue;
if(seg::query(seg::rt,st[x],ed[x],1,n)<=d[x]+k-1)
continue;
seg::add(seg::rt,st[x],d[x],1,n);
res++;
if(d[x]>k)
q.push(jump(x,k));
}
ans[i]=res;
}
int q;
scanf("%d",&q);
while(q--)
{
scanf("%d",&x);
if(x>=maxd)
printf("%d\n",leaves);
else
printf("%d\n",ans[x]);
}
return 0;
}
【XSY2667】摧毁图状树 贪心 堆 DFS序 线段树的更多相关文章
- BZOJ_4034 [HAOI2015]树上操作 【树链剖分dfs序+线段树】
一 题目 [HAOI2015]树上操作 二 分析 树链剖分的题,这里主要用到了$dfs$序,这题比较简单的就是不用求$lca$. 1.和树链剖分一样,先用邻接链表建双向图. 2.跑两遍$dfs$,其实 ...
- [bzoj3306]树——树上倍增+dfs序+线段树
Brief Description 您需要写一种数据结构,支持: 更改一个点的点权 求一个子树的最小点权 换根 Algorithm Design 我们先忽略第三个要求. 看到要求子树的最小点权,我们想 ...
- BZOJ - 4196 软件包管理器 (树链剖分+dfs序+线段树)
题目链接 设白色结点为未安装的软件,黑色结点为已安装的软件,则: 安装软件i:输出结点i到根的路径上的白色结点的数量,并把结点i到根的路径染成黑色.复杂度$O(nlog^2n)$ 卸载软件i:输出结点 ...
- 【BZOJ-3252】攻略 DFS序 + 线段树 + 贪心
3252: 攻略 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 339 Solved: 130[Submit][Status][Discuss] D ...
- Codeforces Round #442 (Div. 2)A,B,C,D,E(STL,dp,贪心,bfs,dfs序+线段树)
A. Alex and broken contest time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- BZOJ 3252题解(贪心+dfs序+线段树)
题面 传送门 分析 此题做法很多,树形DP,DFS序+线段树,树链剖分都可以做 这里给出DFS序+线段树的代码 我们用线段树维护到根节点路径上节点权值之和的最大值,以及取到最大值的节点编号x 每次从根 ...
- dfs序线段树
dfs序+线段树,啥?如果在一棵树上,需要你修改一些节点和查询一些节点,如果直接dfs搜的话肯定超时,那用线段树?树结构不是区间啊,怎么用?用dfs序将树结构转化为一个区间,就能用线段树进行维护了. ...
- DFS序+线段树(bzoj 4034)
题目链接 题目就不多说了. 本题目,可以用dfs序+线段树做:题目给定了一棵树,树上节点告诉了权值.我们可以先将这棵树进行dfs将一棵树变成线性结构:如图 变成这样后,然后就可以用线段树. 操作1:也 ...
- [51nod 1681]公共祖先(dfs序+线段树合并)
[51nod 1681]公共祖先(dfs序+线段树合并) 题面 给出两棵n(n<=100000)个点的树,对于所有点对求它们在两棵树中公共的公共祖先数量之和. 如图,对于点对(2,4),它们在第 ...
随机推荐
- BZOJ1997 平面图判定 平面图性质 2-sat
相交的两条边不能在同一侧,用2-sat即可. 平面图点数-边数关系 \(E\le 3V-6\) 写这篇文章我只是想说明,知乎一小时,题解一分钟. lb Zhihu, gos langar Qarwet ...
- p2394 精度题
题意:输出n/23即可 解法一: 利用高精度的long double直接输出,但由于n的长度不确定,我们要加个限制%12Lf #include <cstdio> int main(){ l ...
- Mike and distribution CodeForces - 798D (贪心+思维)
题目链接 TAG: 这是我近期做过最棒的一道贪心思维题,不容易想到,想到就出乎意料. 题意:给定两个含有N个正整数的数组a和b,让你输出一个数字k ,要求k不大于n/2+1,并且输出k个整数,范围为1 ...
- R语言
什么是R语言编程? R语言是一种用于统计分析和为此目的创建图形的编程语言.不是数据类型,它具有用于计算的数据对象.它用于数据挖掘,回归分析,概率估计等领域,使用其中可用的许多软件包. R语言中的不同数 ...
- JQuery 的Ajax的使用
JSON:一种轻量级的数据表示方法,优点:传输方便,占用字节少 XML:一种偏重量级的数据表示方法,优点:格式清晰,占用字节多,大量的字节都浪费在了标签上: 网络传输我们常使用json,因为浏览器解析 ...
- iOS保持App真后台运行
https://www.jianshu.com/p/d466f2da0d33 在我看来,苹果系统与安卓系统最直观的区别就是后台处理方式了吧,安卓手机一旦开启了很多app放到后台,即使前台什么也不做,就 ...
- 有界算子p129
? 如果我把这里的1改成2,把1/(a-b) 换成1/2(a-b) 为什么不能是? 2. 这里的x是关于t的函数,为什么x属于 结果了?和x应该没有关系呀? 3. 那为什么T的范数不是一个固定值?为什 ...
- 【360图书馆】插入U盘自动攻击:BadUSB原理与实现
插入U盘自动攻击:BadUSB原理与实现 漏洞背景 “BadUSB”是今年计算机安全领域的热门话题之一,该漏洞由Karsten Nohl和Jakob Lell共同发现,并在今年的Black ...
- Django--CRM--QueryDict, 模糊搜索, 加行级锁
一 . QueryDict的修改 # QueryDict正常是不允许修改的,要想往里面添加内容,需要另mutable=True dic = request.GET print(dic) # <Q ...
- mysql常用运算符
一.算数运算符 + 加法 - 减法 * 乘法 / 除法 % 返回余数 二.比较运算符 = 等于 <>或!= 不等于 <=> 等于(这里是安全的等于 例如: select nul ...