题目链接:codeforces 1065F Up and Down the Tree

题意:给出一棵树的节点数\(n\)以及一次移动的最大距离\(k\),现在有一个标记在根节点1处,每一次可以进行一下的两个操作之一:

1、将标记移动至当前节点的子树中的某一个叶子

2、将当前标记向上移,向上移的距离不得超过\(k\)

求最多可以访问到多少个叶子结点

分析:一看就知道应该用树形dp去维护它

我们记\(dp[u]\)表示以\(u\)为根节点的子树中最多可以访问多少个叶子结点

\(dp[u]\)由两部分组成:一是跳到下面的节点再跳回\(u\)的叶子结点个数,二是跳到\(u\)的某一棵子树中不再跳回\(u\)时可以访问到的叶子结点个数

为了维护这个我们再记两个辅助数组\(dis[u]\)表示距离\(u\)最近的叶子结点的距离,\(back[u]\)表示在\(u\)的子树中跳到\(u\)再跳回来\(u\)时可以访问到的叶子结点个数

那么这两个数组的维护是显而易见的

对于\(dp\)数组的维护,第一部分就是\(back[u]\),直接加上即可

对于第二部分,我们要考虑的是\(u\)应该往哪一棵子树跳,由于能跳回来的已经在1中计算过了,我们在这里也就不能考虑这一部分,因此是选取最大的\(dp[v]-back[v]\)去跳

最后注意在\(dis[u]\geq k\)时,由于此时的\(back[u]\)已经对它的父亲节点不会再存在贡献,直接清零即可

#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
using namespace std;
const int maxd=1e9+7;
struct node{
int to,nxt;
}sq[2001000];
int n,k,head[1001000],all=0,dp[1001000],dis[1001000],back[1001000]; int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
} void add(int u,int v)
{
all++;sq[all].to=v;sq[all].nxt=head[u];head[u]=all;
} void dfs(int u,int fa)
{
dis[u]=maxd;int i;
for (i=head[u];i;i=sq[i].nxt)
{
int v=sq[i].to;
if (v==fa) continue;
dfs(v,u);
dis[u]=min(dis[u],dis[v]+1);
back[u]+=back[v];
dp[u]=max(dp[u],dp[v]-back[v]);
}
dp[u]+=back[u];
if (dis[u]==maxd) {dis[u]=0;dp[u]=back[u]=1;}
if (dis[u]>=k) back[u]=0;
} int main()
{
n=read();k=read();
int i;
for (i=2;i<=n;i++)
{
int v=read();add(i,v);add(v,i);
}
memset(dp,0,sizeof(dp));
memset(dis,0,sizeof(dis));
memset(back,0,sizeof(back));
dfs(1,0);
printf("%d",dp[1]);
return 0;
}

codeforces 1065F Up and Down the Tree的更多相关文章

  1. Codeforces 914H Ember and Storm's Tree Game 【DP】*

    Codeforces 914H Ember and Storm's Tree Game 题目链接 ORZ佬 果然出了一套自闭题 这题让你算出第一个人有必胜策略的方案数 然后我们就发现必胜的条件就是树上 ...

  2. Codeforces Round #499 (Div. 1) F. Tree

    Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...

  3. Up and Down the Tree CodeForces - 1065F (树形dp)

    链接 题目大意:给定$n$结点树, 假设当前在结点$v$, 有两种操作 $(1)$移动到$v$的子树内任意一个叶子上 $(2)$若$v$为叶子, 可以移动到距离$v$不超过$k$的祖先上 初始在结点$ ...

  4. Educational Codeforces Round 6 E. New Year Tree dfs+线段树

    题目链接:http://codeforces.com/contest/620/problem/E E. New Year Tree time limit per test 3 seconds memo ...

  5. Codeforces Round #353 (Div. 2) D. Tree Construction 二叉搜索树

    题目链接: http://codeforces.com/contest/675/problem/D 题意: 给你一系列点,叫你构造二叉搜索树,并且按输入顺序输出除根节点以外的所有节点的父亲. 题解: ...

  6. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  7. Codeforces 600E. Lomsat gelral(Dsu on tree学习)

    题目链接:http://codeforces.com/problemset/problem/600/E n个点的有根树,以1为根,每个点有一种颜色.我们称一种颜色占领了一个子树当且仅当没有其他颜色在这 ...

  8. Codeforces Round #540 (Div. 3)--1118F1 - Tree Cutting (Easy Version)

    https://codeforces.com/contest/1118/problem/F1 #include<bits/stdc++.h> using namespace std; in ...

  9. Codeforces Round #353 (Div. 2) D. Tree Construction 模拟

    D. Tree Construction 题目连接: http://www.codeforces.com/contest/675/problem/D Description During the pr ...

随机推荐

  1. 怎么用npm发布一个包,详细教程

    我们已经实现了路由的自动化构建,但是我们可以看到,一大串代码怼在里面.当然你也可以说,把它封装在一个JS文件里面,然后使用require('./autoRoute.js')给引入进来,那也行.但是,为 ...

  2. i++ 相比 ++i 哪个更高效?为什么?

    ++i的效率高些,++i在运算过程中不产生临时对象,返回的就是i,是个左值,类似++i=1这样的表达式是合法的,而i++在运算的过程中会产生临时对象,返回的是零时对象的值,是个右值,像i++=1这样的 ...

  3. 解析vue2.0的diff算法 虚拟DOM介绍

    react虚拟dom:依据diff算法台 前端:更新状态.更新视图:所以前端页面的性能问题主要是由Dom操作引起的,解放Dom操作复杂性 刻不容缓 因为:Dom渲染慢,而JS解析编译相对非常非常非常快 ...

  4. ImportError: DLL load failed: 找不到指定的模块。

    这里用的anacoda,报错是找不到DLL,可能是该DLL的环境变量没配置,配置系统环境变量: 重启一下pycharm,OK.

  5. 如何优化Docker储存

    大家在使用Docker的过程中,有没有想过,Docker在本地存储镜像时把文件存储在哪里了呢?有没有对文件的总大小做一定的限制呢?能不能调整本地存储的位置及总限制大小呢?今天,我们就从这些问题入手,来 ...

  6. gnuplot画折线图

    之前尝试用jfreechart画自定义横坐标的折线图或时序图,发现很复杂,后来改用gnuplot了. gnuplot在网上一搜就能找到下载地址. 安装完成后,主要是命令行形式的交互界面,至少比jfre ...

  7. stark组件之pop页面,按钮,url,页面

      1.Window open() 方法 2.admin的pop添加按钮 3.stark之pop功能 3.知识点总结 4.coding代码 1.Window open() 方法 效果图   2.adm ...

  8. Vue-router路由使用,单页面的实现

    1.安装路由系统 NPM npm install vue-router 2.在main.js中进入引用 import VueRouter from 'vue-router' 3.创建三个空的组件: V ...

  9. class用法

    自 PHP 5.5 起,关键词 class 也可用于类名的解析.使用 ClassName::class 你可以获取一个字符串,包含了类 ClassName 的完全限定名称.这对使用了 命名空间 的类尤 ...

  10. [转帖]Windows和Linux对决(多进程多线程)

    Windows和Linux对决(多进程多线程) https://blog.csdn.net/world_2015/article/details/44920467 太长了 还没看完.. 还是没太理解好 ...