题目链接

很明显的一道完全背包板子题,做法也很简单,就是要注意

这里你可以买比所需多的干草,只要达到数量就行了

状态转移方程:dp[j]=min(dp[j],dp[j-m[i]]+c[i])

代码如下:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<time.h>
using namespace std;
int h,n,m[],c[],dp[];
int main()
{
cin>>n>>h;
for(int i=;i<=n;i++)
{
cin>>m[i]>>c[i];
}
for(int i=;i<=h+;i++)
{
dp[i]=;
}
for(int i=;i<=n;i++)
{
for(int j=m[i];j<=h+;j++)
{
dp[j]=min(dp[j],dp[j-m[i]]+c[i]);
}
}
int ans=;
for(int i=h;i<=h+;i++)
{
ans=min(ans,dp[i]);
}
cout<<ans;
}

和0/1背包比较一下:

完全:
for(int i=;i<=n;i++)
{
for(int j=m[i];j<=h+;j++)
{
dp[j]=min(dp[j],dp[j-m[i]]+c[i]);
}
}
0/1
 for(int i=1;i<=n;i++)
{
for(int j=m;j>=c[i];j--)
{
dp[j]=dp[j]+dp[j-c[i]];
}
}

有什么不一样呢?

我们可以发现,区别在于这两行:

/   for(int j=m;j>=c[i];j--)
完全 for(int j=c[i];j<=m;j++)//(这里是为了统一方便对比用一样的变量)

0/1是--,而完全是交换了0/1的位置并且变成++;

因为0/1背包每个都只能选择一次,而且dp[i]是由dp[i+1]推出的,即如果求dp[i]必需求dp[i+1],所以从大到小;

而完全背包每个可以选的次数不限,dp[i]是由dp[i-1]推出的,故从小到大。

洛谷P2918 [USACO08NOV]买干草(一道完全背包模板题)的更多相关文章

  1. 洛谷 P2918 [USACO08NOV]买干草Buying Hay 题解

    P2918 [USACO08NOV]买干草Buying Hay 题目描述 Farmer John is running out of supplies and needs to purchase H ...

  2. bzoj1618 / P2918 [USACO08NOV]买干草Buying Hay(完全背包)

    P2918 [USACO08NOV]买干草Buying Hay 显然的完全背包 设$f[i]$为买$i$磅干草的最小代价 搞搞完全背包即可 注意到最后可能买的干草超出范围,但是价格可能更低. 于是我们 ...

  3. P2918 [USACO08NOV]买干草Buying Hay

    链接:Miku ---------------- 这就是一个完全背包的板子题 ---------------- 我们把重量当作重量,开销当作价值,那么这个题就是个求价值最小的完全背包 然而题目上说了是 ...

  4. 洛谷 P2871 [USACO07DEC]手链Charm Bracelet && 01背包模板

    题目传送门 解题思路: 一维解01背包,突然发现博客里没有01背包的板子,补上 AC代码: #include<cstdio> #include<iostream> using ...

  5. 洛谷P1067 多项式输出 NOIP 2009 普及组 第一题

    洛谷P1067 多项式输出 NOIP 2009 普及组 第一题 题目描述 一元n次多项式可用如下的表达式表示: 输入输出格式 输入格式 输入共有 2 行 第一行 1 个整数,n,表示一元多项式的次数. ...

  6. 洛谷比赛 U5442 买(最长链)

    U5442 买 题目提供者bqsgwys 标签 树形结构 树的遍历 洛谷原创 题目背景 小E是个可爱的电路编码员. 题目描述 一天小E又要准备做电路了,他准备了一个电路板,上面有很多个电路元器件要安装 ...

  7. 【题解】洛谷P1273 有线电视网(树上分组背包)

    次元传送门:洛谷P1273 思路 一开始想的是普通树形DP 但是好像实现不大好 观摩了一下题解 是树上分组背包 设f[i][j]为以i为根的子树中取j个客户得到的总价值 我们可以以i为根有j组 在每一 ...

  8. 【洛谷】P1541 乌龟棋(四维背包dp)

    题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...

  9. 【题解】洛谷P1941 [NOIP2014TG] 飞扬的小鸟(背包DP)

    次元传送门:洛谷P1941 思路 从题意可知 在每个单位时间内 可以无限地向上飞 但是只能向下掉一次 所以我们可以考虑运用背包解决这道题 上升时 用完全背包 下降时 用01背包 设f[x][y]为在坐 ...

随机推荐

  1. 【Java面试宝典】深入理解JAVA虚拟机

    一.运行时数据区域 线程隔离:线程隔离的意思,就是给不同的线程多分配的资源用,以做到不争用. 线程共享:线程共享就是资源只有一个没有办法分配更多,只能共享. Java虚拟机管理的内存包括几个运行时数据 ...

  2. Azure Load Balancer : 动态扩展

    笔者在前文<Azure Load Balancer : 支持 IPv6>中介绍了如何通过 PowerShell 脚本创建支持 IPv6 的 Load Balancer.本文我们接着介绍如何 ...

  3. .net core2 笔记

    资源: https://github.com/aspnet/home https://github.com/dotnet/cli https://www.cnblogs.com/billyang/p/ ...

  4. js判断当前浏览器页面是否切换

    公司做mifi设备,ui界面很多信息需要1S钟不断异步请求更新信息,如果同时打开多个浏览器或者多个当前界面,设备1S钟会收到很多个请求,由于设备本身内存限制,会导致响应速度过慢,且会造成设备重启等. ...

  5. [转帖]Linux 的静态库与动态库

    Linux下的静态库与动态库 2017年02月18日 09:17:13 LLZK_ 阅读数:10257 标签: linux动态库静态库区别使用 更多 个人分类: Linux学习笔记 所属专栏: Lin ...

  6. [学习]UX 测试 5S 范围

    最近被UX测试搞的死去活来的 郁闷坏了. 豆瓣上面有一个介绍: 好的框架总是简洁的. Strategy - Scope - Structure - Skeleton - Surface五个层面,用bo ...

  7. day 7-14 数据库完整性约束

    一. 介绍 约束条件与数据类型的宽度一样,都是可选参数 作用:用于保证数据的完整性和一致性 主要分为: PRIMARY KEY 标示该字段为表的主键,可以唯一的标示记录 FOREIGN KEY 标示该 ...

  8. ssl证书部署问题

    问:我现在得到的ssl证书是.crt和.key两个在nginx环境下部署的证书,如果我们改用是tomcat,现在把这两个文件合成了.jks给tomcat使用,合成的时候输入的jks密码是不是就是部署在 ...

  9. Linux在shell中进入python敲方向键出现「^[[C^[[D」的解决办法

    安装yum -y install readline-devel,然后在重新编译python

  10. Python 版百度站长平台链接主动推送脚本

    如果自己的网站需要被百度收录,可以在搜索结果中找到,就需要将网站的链接提交给百度.依靠百度的爬虫可能无法检索到网站所有的内容,因此可以主动将链接提交给百度. 在百度的站长平台上介绍了链接提交方法,目前 ...