[Codeforces671D]Roads in Yusland

Tags:题解


题意

luogu

给定以1为根的一棵树,有\(m\)条直上直下的有代价的链,求选一些链把所有边覆盖的最小代价。若无解输出-1

\(n\le 3*10^5\)

题解

这题有一些DP做法,这里不再赘述了。

首先你得知道线性规划的对偶

式子是这样的\(max\{c^Tx|Ax\le b\}=min\{b^Ty|A^Ty\ge c\}\)

强行往上面套(右式):

  • \(c\)为全1列向量,长度为\(m\)
  • \(y\)为01列向量,长度为\(m\),表示每条链选或不选
  • \(A^T\)为长\(n-1\)、宽\(m\)的01矩阵,\(A[i][j]\)表示\(i\)这条边在不在第\(j\)条链中
  • \(b^T\)为长为\(m\)的行向量,表示选每条链的代价

所以现在的问题就是要构造一个\(x\)使得左式最大。

那我们寻找左式的实际意义:给每条边标记一个权值\(x\),使得每条链上的边的权值和不超过其代价。

感觉完全不是一个问题了对吧,但是确实他们答案相同。

为方便表述,这条边标记权值\(x\)记为这条边选了\(x\)次。

然后这是一个较为显然的贪心,从深到浅能选则选,用可并堆维护当前点到父亲这条边能选的最多次数。

代码

#include<iostream>
#include<vector>
#define pb push_back
#define lc t[x].ch[0]
#define rc t[x].ch[1]
using namespace std;
const int N=3e5+10;
int n,m,cf[N],rt[N],dep[N],nod;
long long Ans;
vector<int> E[N],St[N];
struct mmp{int x,y,c;}A[N];
struct Heap{int ch[2],val,id,dis,tag;}t[N];
void Put(int x,int k) {t[x].tag+=k;t[x].val+=k;}
void pushdown(int x) {int &v=t[x].tag;if(v) Put(lc,v),Put(rc,v),v=0;}
int Merge(int x,int y)
{
if(!x||!y) return x+y;
pushdown(x);pushdown(y);
if(t[x].val>t[y].val) swap(x,y);
rc=Merge(rc,y);
if(t[lc].dis<t[rc].dis) swap(lc,rc);
t[x].dis=t[lc].dis+1;
return x;
}
int Del(int x) {return Merge(lc,rc);}
void dfs(int x,int fr)
{
dep[x]=dep[fr]+1;
for(auto R:E[x])
if(R!=fr) dfs(R,x),rt[x]=Merge(rt[x],rt[R]),cf[x]+=cf[R];
if(!cf[x]&&x>1) puts("-1"),exit(0);
for(auto P:St[x])
t[++nod].val=A[P].c,t[nod].id=P,rt[x]=Merge(rt[x],nod);
while(dep[A[t[rt[x]].id].y]>=dep[x]) rt[x]=Del(rt[x]);
if(rt[x]) Ans+=t[rt[x]].val,Put(rt[x],-t[rt[x]].val);
}
int main()
{
cin>>n>>m;
for(int i=1,x,y;i<n;i++)
scanf("%d%d",&x,&y),E[x].pb(y),E[y].pb(x);
for(int i=1,x,y,c;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&c);
St[x].pb(i);cf[x]++;cf[y]--;
A[i]=(mmp){x,y,c};
}
dfs(1,0);
cout<<Ans<<endl;
}

[Codeforces671D]Roads in Yusland的更多相关文章

  1. 题解-Codeforces671D Roads in Yusland

    Problem Codeforces-671D 题意概要:给定一棵 \(n\) 点有根树与 \(m\) 条链,链有费用,保证链端点之间为祖先关系,问至少花费多少费用才能覆盖整棵树(\(n-1\) 条边 ...

  2. codesforces 671D Roads in Yusland

    Mayor of Yusland just won the lottery and decided to spent money on something good for town. For exa ...

  3. Codeforces 671 D. Roads in Yusland

    题目描述 Mayor of Yusland just won the lottery and decided to spent money on something good for town. Fo ...

  4. 【CF671D】Roads in Yusland(贪心,左偏树)

    [CF671D]Roads in Yusland(贪心,左偏树) 题面 洛谷 CF 题解 无解的情况随便怎么搞搞提前处理掉. 通过严密(大雾)地推导后,发现问题可以转化成这个问题: 给定一棵树,每条边 ...

  5. 【CF617D】Roads in Yusland

    [CF617D]Roads in Yusland 题面 蒯的洛谷的 题解 我们现在已经转化好了题目了,戳这里 那么我们考虑怎么求这个东西,我们先判断一下是否所有的边都能被覆盖,不行的话输出\(-1\) ...

  6. 【CodeForces】671 D. Roads in Yusland

    [题目]D. Roads in Yusland [题意]给定n个点的树,m条从下往上的链,每条链代价ci,求最少代价使得链覆盖所有边.n,m<=3*10^5,ci<=10^9,time=4 ...

  7. Codeforces 671D Roads in Yusland [树形DP,线段树合并]

    洛谷 Codeforces 这是一个非正解,被正解暴踩,但它还是过了. 思路 首先很容易想到DP. 设\(dp_{x,i}\)表示\(x\)子树全部被覆盖,而且向上恰好延伸到\(dep=i\)的位置, ...

  8. codeforces 671D Roads in Yusland & hdu 5293 Tree chain problem

    dp dp优化 dfs序 线段树 算是一个套路.可以处理在树上取链的问题.

  9. Codeforces 671D. Roads in Yusland(树形DP+线段树)

    调了半天居然还能是线段树写错了,药丸 这题大概是类似一个树形DP的东西.设$dp[i]$为修完i这棵子树的最小代价,假设当前点为$x$,但是转移的时候我们不知道子节点到底有没有一条越过$x$的路.如果 ...

随机推荐

  1. VScode 1.13 gocode提示dial tcp 216.239.37.1:443: connectex: A connection attempt failed because the connected..

    在将VScode升级至 1.13后让升级gocode,在升级时报出如下错误 D:\go_work\src>go get -u -v github.com/mdempsky/gocode gith ...

  2. luogu 2878 贪心

    其实这题不难,只是想告诉自己:贪心不全是真的脑残拿最大就AC 此题实际上就是比较x,y优先级利用时间计算得到a[i]t/a[i].d(没错时间在上,并非惯性思维的d在上) t*a[x].d+(t+a[ ...

  3. Spring Boot 起步

    ……………………………………………………………………………………………………………… [应用配置]application.yml [port][context-path][datasource][jp ...

  4. PHP+MySql+Bootstrap实现用户界面数据的删除、修改与批量选择删除——实例操作

    第一步:在数据库中建立要操作的信息表 如下图: 第二步:实现对该信息表中数据的删除功能 代码如下:main(主页面) <!DOCTYPE html><html>    < ...

  5. oracle 对现有的表进行列表分区

    create tablespace pur120000 datafile 'D:\orcldata\pur120000.dbf' size 1024m reuse autoextend on next ...

  6. 第25月第18天 vue

    1.cnpm sudo chown -R $USER /usr/local  npm install -g cnpm --registry=https://registry.npm.taobao.or ...

  7. steps/train_lda_mllt.sh

    LDA+MLLT指的是在计算MFCC后对特征进行的变换:首先对特征进行扩帧,使用LDA降维(默认降低到40),然后经过多次迭代轮数估计一个对角变换(又称为MLLT或CTC) .详见 http://ka ...

  8. LR-Controller 如何自定义显示虚拟用户状态

    我们压测时,如何直观,实时地查看当前运行账号和迭代情况呢. 在运行脚本中添加一行代码就解决了~~~~~~~~~~~

  9. s9.16作业,员工信息表

    转载https://blog.csdn.net/qq_35883464/article/details/83151464 实现员工信息表文件存储格式如下:id,name,age,phone,job1, ...

  10. MyBatis中---数据库配置的属性名冲突问题

    一.db.properties 属性文件中 最好加特殊的标志前缀  jdbc.username ,如果单纯的username有可能影响到 mapper.xml中的 ${username}; 举例   ...