luogu P3238 [HNOI2014]道路堵塞
这什么题啊,乱搞就算了,不知道SPFA已经死了吗 不对那个时候好像还没死
暴力就是删掉边后跑Dijkstra SPFA
然后稍微分析一下,可以发现题目中要求的不经过最短路某条边的路径,一定是先在最短路上走,然后走不是最短路的边,然后走回在最短路上的点走完最短路,因为绕两次肯定不优
所以每次断掉一条边,就从这条边的起点更新最短路,如果走到一个在后面的最短路上的点(如果走到在前面的点,那么到终点会经过断掉的边),就可以丢到堆里,然后每次把堆里不合法的(在前面绕路的)路径删掉,取堆顶就是答案
复杂度\(O(\)玄学\(SPFA)\)
#include<bits/stdc++.h>
#define LL long long
#define db double
#define il inline
#define re register
using namespace std;
const int N=1e5+10;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int to[N<<1],nt[N<<1],w[N<<1],hd[N],tot;
il void add(int x,int y,int z){++tot,to[tot]=y,nt[tot]=hd[x],w[tot]=z,hd[x]=tot;}
struct node
{
int x,d;
bool operator < (const node &bb) const {return d>bb.d;}
}a[N];
priority_queue<node> hp;
queue<int> q;
bool v[N],vv[N];
int n,m,kk,di[N],e[N],p[N],id[N],d1[N],dn[N];
int st[N],tp;
int main()
{
n=rd(),m=rd(),kk=rd();
for(int i=1;i<=m;++i)
{
int x=rd(),y=rd(),z=rd();
add(x,y,z);
}
p[0]=1;
for(int i=1;i<=kk;++i) e[i]=rd(),p[i]=to[e[i]],id[to[e[i]]]=i;
for(int i=1;i<=kk;++i) d1[i]=d1[i-1]+w[e[i]];
for(int i=kk;i;--i) dn[i-1]=dn[i]+w[e[i]];
memset(di,0x3f3f3f,sizeof(di));
for(int h=0;h<kk;++h)
{
while(tp) vv[st[tp--]]=0;
di[p[h]]=d1[h],v[p[h]]=1,q.push(p[h]);
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=hd[x];i;i=nt[i])
{
if(i==e[h+1]) continue;
int y=to[i];
if(id[y]&&id[y]>=h)
{
if(!vv[y])
{
vv[y]=1;
st[++tp]=y;
a[y].x=id[y],a[y].d=di[x]+w[i]+dn[id[y]];
}
else a[y].d=min(a[y].d,di[x]+w[i]+dn[id[y]]);
}
else if(di[y]>di[x]+w[i])
{
di[y]=di[x]+w[i];
if(!v[y]) v[y]=1,q.push(y);
}
}
v[x]=0;
}
for(int i=1;i<=tp;++i) hp.push(a[st[i]]);
while(!hp.empty()&&hp.top().x<=h) hp.pop();
printf("%d\n",hp.empty()?-1:hp.top().d);
}
return 0;
}
luogu P3238 [HNOI2014]道路堵塞的更多相关文章
- 洛谷 [HNOI2014]道路堵塞 解题报告
[HNOI2014]道路堵塞 题意 给一个有向图并给出一个这个图的一个\(1\sim n\)最短路,求删去这条最短路上任何一条边后的最短路. 又事SPFA玄学... 有个结论,新的最短路一定是\(1\ ...
- 动态删边SPFA: [HNOI2014]道路堵塞
[HNOI2014]道路堵塞 题目描述 $A$ 国有 $N$座城市,依次标为$1$到$N$.同时,在这$N$座城市间有$M$条单向道路,每条道路的长度是一个正整数.现在,$A$国交通部指定了一条从城市 ...
- bzoj 3575: [Hnoi2014]道路堵塞
Description A 国有N座城市,依次标为1到N.同时,在这N座城市间有M条单向道路,每条道路的长度是一个正整数.现在,A国交通部指定了一条从城市1到城市N的路径, 并且保证这条路径的长度是所 ...
- [HNOI2014]道路堵塞
题目描述 A国有N座城市,依次标为1到N.同时,在这N座城市间有M条单向道路,每条道路的长度是一个正整数.现在,A国交通部指定了一条从城市1到城市N的路径,并且保证这条路径的长度是所有从城市1到城市N ...
- bzoj3575[Hnoi2014]道路堵塞
http://www.lydsy.com/JudgeOnline/problem.php?id=3575 总赶脚第二题总是比第三题难...... 好吧,这题一点思路都没有 听说用民科可以过掉大部分数据 ...
- BZOJ.3575.[HNOI2014]道路堵塞(最短路 动态SPFA)
题目链接 \(Description\) 给你一张有向图及一条\(1\)到\(n\)的最短路.对这条最短路上的每条边,求删掉这条边后\(1\)到\(n\)的最短路是多少. \(Solution\) 枚 ...
- 【BZOJ】3575: [Hnoi2014]道路堵塞
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3575 大概的做法是,按照顺序枚举每一条要删去的边,(假设当前点为$u$,在最短路径上的下一 ...
- 【bzoj3575】 Hnoi2014—道路堵塞
http://www.lydsy.com/JudgeOnline/problem.php?id=3575 (题目链接) 题意 给出一个有向图和一条最短路,问最短路上任意一条边断掉,此时的最短路是多少. ...
- 【LG3238】 [HNOI2014]道路堵塞
题目描述 给你一张\(N\)个点.\(M\)条边的有向图,按顺序给定你一条有\(L\)条边的\(1\rightarrow n\)的最短路, 每次断掉这\(L\)条边中的一条(不对后面答案产生影响),求 ...
随机推荐
- 浏览器直接显示html代码,不解析代码
在某些时候,我们可能因为某些特殊的原因,不想让浏览器解析html代码. 1,把代码放到js中,如下 <script type='text/html' style='display:block'& ...
- Django 自定义过滤器
设定自定义过滤器之前要现在配置文件内把自己项目名在 INSTALLED_APPS 内导入 #已安装的django应用 INSTALLED_APPS = [ 'django.contrib.admin' ...
- 用标准C编写COM dll
参考资料: 用标准C编写COM(一)COM in plain C,Part1 (http://blog.csdn.net/wangqiulin123456/article/details/809235 ...
- 在windows中把一个文件夹打成war包
转: 在windows中把一个文件夹打成war包 一般开发打war包时都是用MyEclipse或IntelliJ IDEA等直接导出war文件,这里介绍一种如何把一个文件夹打成war包的方式,如下 ...
- ES6学习:Map结构的目的和基本用法
Map结构的目的和基本用法 JavaScript的对象(Object)本质上是键值对的集合(Hash结构),但是只能用字符串作为键.这给它的使用带来了很大的限制. 1 2 3 4 5 6 7 8 ...
- 如何解决串session:
在IE快捷方式上点击鼠标右键>属性>快捷方式>目标:"C:\Program Files\Internet Explorer\iexplore.exe" -nome ...
- 2017-12-15python全栈9期第二天第六节之三次登陆机会升级版再试试
#!/user/bin/python# -*- coding:utf-8 -*-#当剩余为0次机会时.询问用户是否再试试.如果同意那就再给三次机会.可一直继续username = 'zd'passwo ...
- 网络设备监控-Catic添加H3C的监控图解
网络设备监控-Catic添加H3C的监控图解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 首先,我要声明满足2个条件才能作本篇笔记的操作:第一:你得有台cacti服务器,第二 ...
- go build 和 go run区别
- 全角的空格(A1A1)惹的祸!
#先上干货 “A1A1”是指全角的空格(GBK码): #验证 由上图可以看出半角的空格的HEX为"20": 由上图可以看出,在ANSI格式编码的文件中输入的全角的空格,转换为HEX ...