hdu2586How far away ?(LCA LCATarjan离线)
题目链接:acm.hdu.edu.cn/showproblem.php?pid=2586
题目大意:有n个点,同n-1条带有权值的双向边相连,有m个询问,每个询问包含两个数x,y,求x与y的最短距离。
例:
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
#define maxn 400005
struct node{
int x,y;
};
vector<node> edge[maxn],que[maxn];
int ans[maxn],dis[maxn],par[maxn],vis[maxn];
//ans[i]表示第i次询问的答案,dis[i]表示i号节点与根节点的距离
//par[i]表示i号节点的父亲节点
int n,m; void init()
{
for(int i=;i<=n;i++)
{
edge[i].clear();
que[i].clear();
par[i]=i;
ans[i]=;
dis[i]=;
vis[i]=;
}
}
int find(int x)
{
if(x==par[x])
return x;
else
return par[x]=find(par[x]);
}
void unite(int x,int y)
{
int fatherx=find(x),fathery=find(y);
if(fatherx!=fathery)
par[fathery]=fatherx;
}
void TarjanLCA(int x)
{
vis[x]=;
for(int i=;i<edge[x].size();i++)
{
int v=edge[x][i].x;
if(!vis[v])
{
dis[v]=dis[x]+edge[x][i].y;
TarjanLCA(v);
unite(x,v);
}
}
for(int i=;i<que[x].size();i++)
{
int v=que[x][i].x;
if(vis[v])
ans[que[x][i].y]=dis[x]+dis[v]-*dis[find(v)];
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
init();
for(int i=;i<n;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
edge[u].push_back({v,w});
edge[v].push_back({u,w});
}
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
que[x].push_back({y,i});//i表示第几次询问,便于输出
que[y].push_back({x,i});
}
TarjanLCA();
for(int i=;i<=m;i++)
printf("%d\n",ans[i]);
}
return ;
}
hdu2586How far away ?(LCA LCATarjan离线)的更多相关文章
- HDU-2586-How far away(LCA Tarjan离线算法)
链接:https://vjudge.net/problem/HDU-2586 题意: 勇气小镇是一个有着n个房屋的小镇,为什么把它叫做勇气小镇呢,这个故事就要从勇气小镇成立的那天说起了,修建小镇的时候 ...
- poj 1986 Distance Queries(LCA:倍增/离线)
计算树上的路径长度.input要去查poj 1984. 任意建一棵树,利用树形结构,将问题转化为u,v,lca(u,v)三个点到根的距离.输出d[u]+d[v]-2*d[lca(u,v)]. 倍增求解 ...
- bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1272 Solved: 451[Submit][Status ...
- poj 1330 LCA (倍增+离线Tarjan)
/* 先来个倍增 */ #include<iostream> #include<cstring> #include<cstdio> #define maxn 100 ...
- POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13372 Accept ...
- 最近公共祖先LCA Tarjan 离线算法
[简介] 解决LCA问题的Tarjan算法利用并查集在一次DFS(深度优先遍历)中完成所有询问.换句话说,要所有询问都读入后才开始计算,所以是一种离线的算法. [原理] 先来看这样一个性质:当两个节点 ...
- POJ1470 LCA (Targan离线)
bryce1010模板 http://poj.org/problem?id=1470 /*伪代码 Tarjan(u)//marge和find为并查集合并函数和查找函数 { for each(u,v) ...
- LCA的离线快速求法
最常见的LCA(树上公共祖先)都是在线算法,往往带了一个log.有一种办法是转化为"+-1最值问题"得到O(n)+O(1)的复杂度,但是原理复杂,常数大.今天介绍一种允许离线时接近 ...
- POJ 1470 Closest Common Ancestors (最近公共祖先LCA 的离线算法Tarjan)
Tarjan算法的详细介绍,请戳: http://www.cnblogs.com/chenxiwenruo/p/3529533.html #include <iostream> #incl ...
随机推荐
- # 【Python3练习题 008】判断101-200之间有多少个素数,并输出所有素数。
lst = []for i in range(100): #建立 101-200 的列表 lst.append(101+i) for i in range(101, 201): #除数为 101-20 ...
- Thread(生产者和消费者) wait、notify、notifyAll
在java中,线程间的通信可以使用wait.notify.notifyAll来进行控制.从名字就可以看出来这3个方法都是跟多线程相关的,但是可能让你感到吃惊的是:这3个方法并不是Thread类或者是R ...
- Docker部署运行springboot项目,并使用Dockerfile制作镜像
前言: 本来是要搭建一个自动化部署分布式项目的服务器平台的,使用jenkins+k8s+ELK+springboot把一个简单的springboot项目给搞起来,由于工程太大,先分开把每个技术组件单独 ...
- embed标签的flash层级太高问题
因为客户要求,项目得兼容IE的兼容模式 页面到了flash都会遮挡底部悬浮的导航. 改变浮动窗口和embed的层级还是不可以.应该不是层级的关系. 最后百度解决方案:在embed标签内添加了wmode ...
- 在阿里云上部署 Postfix
Postfix 可以很方便的在一台机器上部署 smtp 服务,在 centos 上来说的话可以使用: sudo yum install postfix sudo systemctl enable po ...
- 莫烦scikit-learn学习自修第四天【内置训练数据集】
1. 代码实战 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ from sklearn import datasets from sklearn.linea ...
- Ajax的post表单,不在url后接一大串参数键值对的方法
$('#loginForm').on('submit',function (ev) { //阻止表单参数附在url后面 ev.stopPropagation(); ev.preventDefault( ...
- vue环境搭建+vscode
https://blog.csdn.net/junshangshui/article/details/80376489
- EFI Windows 7 activition
mountvol X: /s copy SLIC.aml X:\EFI\CLOVER\ACPI\WINDOWS BOOTICE X:\EFI\CLOVER\CLOVERX64.efi slmgr -i ...
- 共轭函数Fenchel不等式
f(x)不一定是凸函数,但他的共轭函数一定是凸函数.是仿射函数的逐点上确界. Fenchel不等式 f(x)+f*(x)>=xTy 如