要求m-n内在l-r进制下的是回文数的总个数。

dp[进制][从第j为开始][目前到达第k位] = 总的方案数

dfs枚举目前的到达的位置,这个数开始的位置,进制,前导零,限制条件,然后枚举的时候如果我现在是总的数的前一半,那么我就可以随意枚举,如果我已经到这个数的后一半了,那么我枚举的数字应该要满足和前面一半的这个位置对应的数,否则的话就是不满足条件的回文数,用这个数开始的位置为0来表示这个数不满足条件或者说我枚举的这个数全部都是零。然后算出这个区间内的回文数,要求sumf(i, j), 那么就是这里面的回文数乘k+不是回文数的值。

#include<map>
#include<set>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lowbit(x) (x & (-x)) typedef unsigned long long int ull;
typedef long long int ll;
const double pi = 4.0*atan(1.0);
const int inf = 0x3f3f3f3f;
const int maxn = ;
const int maxm = ;
const int mod = ;
using namespace std; int T, tol;
ll n, m;
int digit[];
ll tmp[];
ll dp[][][]; ll dfs(int pos, int st, int k, bool lead, bool limit) {
if(pos == ) return st ? : ;
if(dp[k][st][pos] != - && !limit) return dp[k][st][pos];
ll ans = ;
int up = limit ? digit[pos] : k-;
for(int i=; i<=up; i++) {
tmp[pos] = i;
if(lead && i == ) ans += dfs(pos-, st-, k, lead, limit && i==digit[pos]);
else if(pos > st/) ans += dfs(pos-, st, k, , limit && i==digit[pos]);
else ans += dfs(pos-, i==tmp[st-pos+] ? st : , k, , limit && i== digit[pos]);
}
if(!limit) dp[k][st][pos] = ans;
return ans;
} ll solve(ll n, int k) {
memset(digit, , sizeof digit);
int pos = ;
while(n) {
digit[pos++] = n % k;
n /= k;
}
return dfs(pos-, pos-, k, , );
} int main() {
int cas = ;
scanf("%d", &T);
memset(dp, -, sizeof dp);
while(T--) {
int l, r;
scanf("%I64d%I64d%d%d", &m, &n, &l, &r);
m--;
ll ans = ;
for(int i=l; i<=r; i++) {
ll cnt1 = solve(n, i);
ll cnt2 = solve(m, i);
ans += (cnt1 - cnt2)*i + (n-m+cnt2-cnt1);
}
printf("Case #%d: %I64d\n", cas++, ans);
}
return ;
}

Palindrome Function HDU - 6156(数位dp)的更多相关文章

  1. 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6156 数位DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6156 题意:如题. 解法:数位DP,暴力枚举进制之后,就转化成了求L,R区间的回文数的个数,这个直接做 ...

  2. HDU 6156 数位dp

    Palindrome Function Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 256000/256000 K (Java/Ot ...

  3. hdu 4507 数位dp(求和,求平方和)

    http://acm.hdu.edu.cn/showproblem.php?pid=4507 Problem Description 单身! 依旧单身! 吉哥依旧单身! DS级码农吉哥依旧单身! 所以 ...

  4. hdu 4352 数位dp + 状态压缩

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. hdu:2089 ( 数位dp入门+模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2089 数位dp的模板题,统计一个区间内不含62的数字个数和不含4的数字个数,直接拿数位dp的板子敲就行 ...

  6. HDU 4352 XHXJ's LIS HDU(数位DP)

    HDU 4352 XHXJ's LIS HDU 题目大意 给你L到R区间,和一个数字K,然后让你求L到R区间之内满足最长上升子序列长度为K的数字有多少个 solution 简洁明了的题意总是让人无从下 ...

  7. hdu 3709 数位dp

    数位dp,有了进一步的了解,模板也可以优化一下了 题意:找出区间内平衡数的个数,所谓的平衡数,就是以这个数字的某一位为支点,另外两边的数字大小乘以力矩之和相等,即为平衡数例如4139,以3为支点4*2 ...

  8. HDU 2089 数位dp入门

    开始学习数位dp...一道昨天看过代码思想的题今天打了近两个小时..最后还是看了别人的代码找bug...(丢丢) 传说院赛要取消 ? ... 这么菜不出去丢人也好吧~ #include<stdi ...

  9. HDU 2089 数位dp/字符串处理 两种方法

    不要62 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

随机推荐

  1. 前端三大框架Angular & React & Vue

    前端三大框架: Angular[Google]:一套框架,多种平台移动端 & 桌面端.学会用Angular构建应用,然后把这些代码和能力复用在多种多种不同平台的应用上 —— Web.移动 We ...

  2. rem移动端适配方案

    一. rem vs em 单位 定义 特点 rem font size of the root element 以根元素字体大小为基准 em font size of the element 以父元素 ...

  3. [转帖]SAP一句话入门:Project System

    SAP一句话入门:Project System http://blog.vsharing.com/MilesForce/A621279.html 这是SAP ERP入门的最后一篇了. 我们这些死跑龙套 ...

  4. [转帖]一个ip对应多个域名多个ssl证书配置-Nginx实现多域名证书HTTPS

    一个ip对应多个域名多个ssl证书配置-Nginx实现多域名证书HTTPS https://home.cnblogs.com/u/beyang/ 一台服务器,两个域名 首先购买https,获取到CA证 ...

  5. Windows 禁止 chrome 自动更新的方法

    来源: https://www.cnblogs.com/zhouwanqiu/p/9329134.html 公司进行兼容性测试 需要chrome的浏览器版本, 但是 公司网络抽风 偶尔 总能是升级到最 ...

  6. js发布订阅模式实现

    //可以用于无相关页面或组件的事件.数据传递,减少在onShow中的业务,降低代码耦合 let events = {} /**订阅**/ function on(name, self, callbac ...

  7. liunx 运维知识二部分

    Windows下的目录和Linux系统下的目录有什么区别? Windows目录下的文件一般都是分区(C盘,D盘...),C盘下面有什么目录,目录下面还有其他目录加上文件. Linux系统目录结构一切都 ...

  8. Django--CRM--一级, 二级 菜单表

    一. 一级菜单表 1. 首先要修改权限表的字段, 在权限表下面加上icon和 is_menu 的字段 2. 展示结果 # 我们既然想要动态生成一级菜单,那么就需要从数据库中拿出当前登录的用户的菜单表是 ...

  9. Session和Cookie介绍及常见httpcode

    Cookie和Session,及常见httpcode 1.cookie和session简介: cookie是放在客户端的键值对,用来识别用户信息的,主要包括:名字,值,过期时间,路径和域.路径与域一起 ...

  10. js函数使用prototype和不适用prototype的区别

    js中类定义函数时用prototype与不用的区别 原创 2017年06月05日 12:25:41 标签: 函数 / prototype / class   首先来看一个实例: function Li ...