MT【253】仿射和蒙日圆
如图,设点$M(x_0,y_0)$是椭圆$C:\dfrac{x^2}{2}+y^2=1$上一点,从原点$O$向圆$M:(x-x_0)^2+(y-y_0)^2=\dfrac{2}{3}$作两条切线分别与椭圆$C$交于$P,Q$,直线$OP,OQ$的斜率分别为$k_1,k_2$
(1)求证:$k_1k_2$为定值
(2)求四边形$OPQM$面积的最大值.



分析:涉及到面积最大容易想到仿射变换:
(1)
$$\begin{cases}
x^{'}&=x\\
y^{'}&=\sqrt{2}y
\end{cases}$$
则$k^{'}=\sqrt{2}k$,由蒙日圆性质得$k_1^{'}k_2^{'}=-1$故$k_1k_2=-\dfrac{1}{2}$
(2)如图$S=\dfrac{1}{\sqrt{2}}(S_1+S_2)=\dfrac{1}{\sqrt{2}}(sin\alpha+cos\alpha)\le1$
第二小问常规方法提示:


MT【253】仿射和蒙日圆的更多相关文章
- MT【290】内外圆求三角最值
求$\sqrt{\dfrac{5}{4}-\sin x}+2\sqrt{\dfrac{9}{4}+\cos x-\sin x}$的最小值. 提示:$\sqrt{\dfrac{5}{4}-\sin x} ...
- MT【32】内外圆(Apollonius Circle)的几何证明
另一方面,如果 M 满足(1)式,那么M必然在以PQ为直径的圆上.事实上当M为P或者Q时,这是显然的.当M异于P,Q时,由$\frac{|MB|}{|MC|}=\frac{|PB|}{|PC|}=\l ...
- MT【172】内外圆
$P,Q$是两个定点,M为平面内一个动点,且$\dfrac{|MP|}{|MQ|}=\lambda(\lambda>0,\lambda\ne1)$, 点M的轨迹围成的区域面积为S , 设$S=f ...
- MT【210】四点共圆+角平分线
(2018全国联赛解答最后一题)在平面直角坐标系$xOy$中,设$AB$是抛物线$y^2=4x$的过点$F(1,0)$的弦,$\Delta{AOB}$的外接圆交抛物线于点$P$(不同于点$A,O,B$ ...
- MT【306】圆与椭圆公切线段
已知椭圆方程$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$,圆方程$x^2+y^2=r^2,(3<r^2<4)$,若直线$l$与椭圆和圆分别切于点$P,Q$求$|PQ| ...
- MT【125】四点共圆
(2017湖南省高中数学竞赛16题) \(AB\)是椭圆\(mx^2+ny^2=1(m>0,n>0,m\ne n)\)的斜率为 1 的弦.\(AB\)的垂直平分线与椭圆交于两点\(CD\) ...
- MT【107】立体几何中用阿波罗尼乌斯圆的一道题
分析:利用内外圆知识知道,B,C两点到 AD 的距离$\le4$. 利用体积公式$V=\frac{1}{3}S_{截面}|AD|\le2\sqrt{15}$
- MT【191】阿波罗尼乌斯圆
已知$f(x)=2\sqrt{(\cos x+\frac{1}{2})^2+\sin^2 x}-\sqrt{\cos^2 x+(\sin x-\frac{1}{2})^2}$,若$m\ge f(x)$ ...
- C++ 2(将类分文件) //点和圆的关系 //设计一个圆形类 和一个点类 计算点和圆的关系 //点到圆心的距离 == 半径 点在圆上 //点到圆心的距离 > 半径 点在圆外 //点到圆心的距离 < 半径 点在圆内 //点到圆心的距离 获取 ....... (x1 -x2)^2 + (y1-y2)^2 开根号 和半径对比 // 计算 可以 两边同时 平方
1 源文件 main.cpp 2 //点和圆的关系 3 //设计一个圆形类 和一个点类 计算点和圆的关系 4 //点到圆心的距离 == 半径 点在圆上 5 //点到圆心的距离 > 半径 点在圆外 ...
随机推荐
- Linux登录MySQL时出现 Can't connect to local MySQL server through socket '/tmp/mysql.sock'解决方法
在Linux上登录MySQL时出现如下提示,如下图: 通过查找资料了解到: MySQL有两种连接方式: (1)TCP/IP (2)socket 对mysql.sock来说,其作用是程序与mysqlse ...
- AtCoder Beginner Contest 122 D - We Like AGC (DP)
D - We Like AGC Time Limit: 2 sec / Memory Limit: 1024 MB Score : 400400 points Problem Statement Yo ...
- 斐波那契数列yield表示
def fib(num): n=0 a,b=0,1 while n<num: print(b) yield a,b=b,a+b n=n+1a=fib(30)next(a)next(a)
- 18-vue-cli脚手架项目中组件的使用
在webpack-simple模板中,包括webpck模板.一个.vue文件就是一个组件. 为什么会这样呢?因为webpack干活了!webpack的将我们所有的资源文件进行打包.同时webpack还 ...
- 如何使用RSS
(转载: http://www.ruanyifeng.com/blog/2006/01/rss.html) 一. 自从我发现很多人不知道什么是RSS以后,我就一直想向大家介绍它,因为它太有用了,将来会 ...
- 给input标签添加默认提示文字
<input name="username" placeholder="请输入用户名" /> placeholder = "提示文字&qu ...
- node path
1.path.basename(path[, ext]) ● path <string> ● ext <string> An optional file extension ● ...
- [官网]Linux版本历史
This is a list of links to every changelog. https://kernelnewbies.org/LinuxVersions 总结一下 2.6.x 存在了八年 ...
- 逻辑斯特回归tensorflow实现
calss #!/usr/bin/python2.7 #coding:utf-8 from __future__ import print_function import tensorflow as ...
- 【学亮IT手记】Servlet的生命周期
1.1 Servlet的生命周期 1.1.1 Servlet的生命周期概述 1.1.1.1 什么是生命周期 生命周期:一个对象从创建到销毁过程. 1.1.1.2 Servlet的生命周期(*****) ...