[luogu1198][bzoj1012][JSOI2008]最大数【线段树+分块】
题目描述
区间查询最大值,结尾插入,强制在线。
分析
线段树可以做,但是练了一下分块,发现自己打错了两个地方,一个是分块的地方把/打成了%,还有是分块的时候标号要-1。
其他也没什么要多讲的。
代码
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#pragma GCC optimize(2)
#define ll long long
#define linf 9223372036854775807
#define inf 0x3f3f3f3f
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; T fl = 1;
char ch = 0;
while (ch < '0' || ch > '9') {
if (ch == '-') fl = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *= fl;
}
ll mx[200005], a[200005];
int sum = 0, block, m, tot;
ll d, lst_ans = 0;
void insert(ll x, int n) {
a[n] = x;
if ((n - 1) % block == 0 || n == 1) mx[++ sum] = x;
else mx[sum] = max(x, mx[sum]);
}
ll query(int l, int r) {
int bl = (l - 1) / block + 1, br = (r - 1) / block + 1;
ll res = -inf;
if (bl == br) for (int i = l; i <= r; i ++) res = max(a[i], res);
else {
for (int i = l; i <= bl * block; i ++) res = max(res, a[i]);
for (int i = br * block - block + 1; i <= r; i ++) res = max(res, a[i]);
for (int i = bl + 1; i <= br - 1; i ++) res = max(res, mx[i]);
}
return res;
}
int main() {
// freopen("data.in","r",stdin);
// freopen("data.out","w",stdout);
memset(mx, -inf, sizeof(mx));
read(m); read(d);
block = sqrt(m) / 2;
tot = 0;
for (int i = 1; i <= m; i ++) {
char opt[3]; ll x;
scanf("%s", opt);
read(x);
if (opt[0] == 'A') {
x = ((x + lst_ans) % d + d) % d;
insert(x, ++ tot);
}
else {
lst_ans = query(tot - (int)x + 1, tot);
printf("%lld\n", lst_ans);
}
}
return 0;
}
[luogu1198][bzoj1012][JSOI2008]最大数【线段树+分块】的更多相关文章
- BZOJ1012 [JSOI2008]最大数 线段树
题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制:LLL不超过当前数列的长度.(L> ...
- [JSOI2008]最大数 (线段树)
题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制:L不超过当前数列的长度.(L>=0 ...
- [JSOI2008]最大数 线段树解法
题目描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值. 限制:L不超过当前数列的长度. 2. 插入操作 ...
- 洛谷 P5897 - [IOI2013]wombats(决策单调性优化 dp+线段树分块)
题面传送门 首先注意到这次行数与列数不同阶,列数只有 \(200\),而行数高达 \(5000\),因此可以考虑以行为下标建线段树,线段树上每个区间 \([l,r]\) 开一个 \(200\times ...
- BZOJ-1012[JSOI2008]最大数maxnumber 线段树区间最值
这道题相对简单下面是题目: 1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MB Submit: 6542 Solve ...
- bzoj1012: [JSOI2008]最大数maxnumber(貌似是道线段树喔)
1012: [JSOI2008]最大数maxnumber 题目:传送门 题解: 发现自己空了一道水题... 1~210000建线段树,其实就是一道裸题... 单点修改+区间查询...1A~ 代码: # ...
- BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 8748 Solved: 3835[Submi ...
- 【听说是线段树】bzoj1012 [JSOI2008]最大数maxnumber
一眼看题目吓了一跳:这TM不就是单调队列吗,200000又怎样,大不了我二分嘛 系统提示:成功开启 手残模式 开始瞎写: #include <cstdio> ]; ]; int m,mod ...
- [洛谷P1198/BZOJ1012][JSOI2008] 最大数 - 树状数组/线段树?
其实已经学了树状数组和线段树,然而懒得做题,所以至今没写多少博客 Description 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数 ...
随机推荐
- 用WSDL4J解析types标签中的内容
WSDL4J是一种用来解析WSDL文本的常用工具. 但网络上用WSDL4J来解析wsdl文档complexType标签中内容的问题一大堆也没有有效的解决方法.今天在我“遍历”wsdl4j的api文档和 ...
- shell脚本--编写CGI代码(shell结合html)以及环境变量
实现shell和html标签混合的方式编写代码: 推荐 初始CGI ,看完大概之后,大概对cgi有个大体的印象.下面是编写混合代码的示例: #!/bin/bash #index.cgi echo & ...
- Nginx三部曲(3)SSL
我们将告诉你 Nginx 的运作模式.蕴含的概念,怎样通过调优 Nginx 来提高应用性能,或是如何设置它的启动和运行. 这个教程有三个部分: 基本概念 —— 这部分需要去了解 Nginx 的一些指令 ...
- 6-2 Verbs and Adjectives with that clauses
1 Many sentences in English contain two clauses: a main clause and a "that" clause. The &q ...
- Arrays.copyOf() 和 System.arrayCopy()分析
java数组的拷贝四种方法:for.clone.System.arraycopy.Arrays.copyof public class Test1 { public static void main( ...
- C++常用宏
宏是由 #define 定义而来,在预处理阶段进行宏展开,它的格式是: #define N 2 + 2 // 仅仅是字符串替换 #define N (2 + 2) // 也是字符串 ,但是是(2 + ...
- 网络编程--使用TCP协议发送接收数据
package com.zhangxueliang.tcp; import java.io.IOException; import java.io.OutputStream; import java. ...
- C# Note33: 总结C# 6.0/7.0 新特性
先注明,本文主体参考自:C# 6.0新特性 目前代码中使用了很多C#6.0的新特性,下面以Point类来做相关叙述: public class Point { public int X { get; ...
- C# Note7:MVVM模式之数据绑定
一.资源说明 (1)本文参考自: 一步步走进WPF的MVVM模式(二):数据绑定 WPF之数据绑定总结 二.正文 数据绑定 (Data Binding)是WPF最重要的特性之一,也是实现 MVVM( ...
- Spring 基于XML配置
基于XML的配置 对于基于XML的配置,Spring 1.0的配置文件采用DTD格式,Spring2.0以后采用Schema格式,后者让不同类型的配罝拥有了自己的命名空间,使得配置文件更具扩展性.此外 ...