题目链接:P2473 [SCOI2008]奖励关

题意:
有n个宝物 每次等概率抛出其中之一
一共抛出k次
每个宝物有一个价值 和一个前提集合
只有集齐了集合中的所有宝物 才可以领取这个宝物
范围:1 <= k <= 100, 1 <= n <= 15,分值为[-106,106]内的整数
 
这个范围长得很dp呀
这个n长得很状压啊
 
最初想法:
对于负价值宝物
我们计算它本身的贡献与它带来的期望贡献
来判定是否可取
对每一个宝物记录它自己的贡献
最后求和
 
正解:逆向状压
2 ^ 15 = 32768
由于为什么不是正向 是为了避开在第i轮状态S不合法的情况
这就是本题的思维瓶颈
刚刚纠结的负数问题 其实说白了就是取决于它后面的状态
所以逆推又避开了这个坑
显然二维dp 一维控制轮数 一维控制状态
三重循环 外面两重分别是这两维
第三重枚举第1~n个物品
若状态j中有物品k需要的所有物品
那么它的价值就是取或不取的最大值
max(f[i + 1][j], f[i + 1][j | (1 << k)] + w[k])
没有就只能不取
f[i + 1][j]
由于求的是期望
每个状态转移完除以n
附上代码:
 #include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cmath>
using namespace std;
const int N = ;
const int M = ;
int inc[M + ];
double w[M + ];
int n, m;
double f[N][ << M]; int main(){
scanf("%d%d", &m, &n);
for(int i = , x; i <= n; i++){
scanf("%lf", &w[i]);
while(scanf("%d", &x) && x)
inc[i] |= ( << x);
}
int lb;
for(int i = m; i >= ; i--)
for(int j = ; j < ( << (n + )); j++){
for(int k = ; k <= n; k++){
if((j & inc[k]) == inc[k]){
f[i][j] += max(f[i + ][j], f[i + ][j | ( << k)] + w[k]);
}
else f[i][j] += f[i + ][j];
}
f[i][j] /= (1.0 * n);
}
printf("%.6lf", f[][]);
return ;
}

LG P2473 [SCOI2008]奖励关的更多相关文章

  1. P2473 [SCOI2008]奖励关(期望)

    P2473 [SCOI2008]奖励关 $n<=15$,显然的状压 设$f[i][w]$表示前$i$轮,状态$w$的最大期望 蓝后我们发现一个问题:$f[i][w]$可能是非法的 于是我们从$f ...

  2. 洛谷 P2473 [SCOI2008]奖励关 解题报告

    P2473 [SCOI2008]奖励关 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出\(k\)次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝 ...

  3. Luogu P2473 [SCOI2008]奖励关

    比较恶心的概率(期望)+状压DP,想正推2H的我瑟瑟发抖 由于数据范围不大,因此我们可以直接状压每个宝物取或不取的情况,设\(f_{i,j}\)表示前\(i\)轮且宝物是否取过的状态为\(j\)时的方 ...

  4. P2473 [SCOI2008]奖励关

    思路 n<=15,所以状压 因为求期望,所以采用逆推的思路,设\(f[i][S]\)表示1~i的宝物获得情况是S,i+1~k的期望 状态转移是当k可以取时,\(f[i][S]+=max(f[i+ ...

  5. 洛谷 P2473 [SCOI2008]奖励关(状压dp+期望)

    题面 luogu 题解 \(n \leq 15\) 状压 \(f[i][S]\)表示第\(i\)轮,吃过的集合为\(S\) 正着转移好像有点复杂 考虑逆推转移(正着转移应该也行) \(f[i][S]\ ...

  6. 洛谷P2473 [SCOI2008]奖励关(期望+状压)

    传送门 我数学期望还是太差了…… 先考虑状压模型,设$dp[i][S]$表示第$i$轮,当前宝物状态为$S$,能获得的最大期望分数 然而这个模型有一个问题,第$i$轮不一定能达到状态$S$ 那么考虑转 ...

  7. 洛谷 P2473 [SCOI2008]奖励关 ( 期望DP )

    题目链接 题意 : 中文题.点链接 分析 : 第一道有关概率期望的DP 有个大部分情况下通用的结论 概率正推.期望反推 原因不明.其实是没有查到较好的解释 这题由于有一些取物品的先决条件在这里 而且观 ...

  8. 【洛谷】2473:[SCOI2008]奖励关【期望DP(倒推)】

    P2473 [SCOI2008]奖励关 题目背景 08四川NOI省选 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不 ...

  9. 【BZOJ1076】[SCOI2008]奖励关 状压DP+期望

    [BZOJ1076][SCOI2008]奖励关 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须 ...

随机推荐

  1. D. Nastya Is Buying Lunch

    链接 [https://codeforces.com/contest/1136/problem/D] 题意 有N个人,a[i]表示第i个人的编号,m个二元组. 当前一个在后一个的前面一个位置时二者可以 ...

  2. semantic-ui 标题

    在semantic-ui中定义了5中标题样式,注意HTML中有h1-h6,而semantic-ui中只有h1-h5. 不过需要注意的是,semantic-ui的标题仍旧使用h1-h5来表示,但是在cl ...

  3. IntelliJ IDEA/WebStrom破解及JDK配置

    title: IntelliJ IDEA/WebStrom破解及JDK配置 (一)破解 破解步骤 第一步:下载破解补丁 第二步:修改配置文件 第三步:重启IntelliJ IDEA/WebStrom填 ...

  4. Mysql中的排序规则utf8_unicode_ci、utf8_general_ci总结

    Mysql中utf8_general_ci与utf8_unicode_ci有什么区别呢?在编程语言中,通常用unicode对中文字符做处理,防止出现乱码,那么在MySQL里,为什么大家都使用utf8_ ...

  5. 【Python3练习题 005】输入三个整数x,y,z,请把这三个数由小到大输出

    import re x, y, z = re.split(',| |,| ', input('请输入3个数字,用逗号或空格隔开:'))x, y, z = int(x), int(y), int(z) ...

  6. bnu——GCD SUM (莫比乌斯反演)

    题目:GCD SUM 题目链接:http://www.bnuoj.com/v3/problem_show.php?pid=39872 算法:莫比乌斯反演.优化 #include<stdio.h& ...

  7. pHP生成唯一单号

    这几天一直在写个人使用的用户中心,虽然期间遇到不少的问题,但还是一点点的都解决了,也从制作期间学到不少的知识,今天就说一说利用PHP生成订单单的方法. 订单号,大家都不陌生,无论从在网上购物,还是在线 ...

  8. Js中instanceof 的用法

    在 JavaScript 中,判断一个变量的类型尝尝会用 typeof 运算符,在使用 typeof 运算符时采用引用类型存储值会出现一个问题,无论引用的是什么类型的对象,它都返回 “object”. ...

  9. pring @Configuration 和 @Component 区别

    一句话概括就是 @Configuration 中所有带 @Bean 注解的方法都会被动态代理,因此调用该方法返回的都是同一个实例. 从定义来看, @Configuration 注解本质上还是 @Com ...

  10. python爬虫之scrapy的pipeline的使用

    scrapy的pipeline是一个非常重要的模块,主要作用是将return的items写入到数据库.文件等持久化模块,下面我们就简单的了解一下pipelines的用法. 案例一: items池 cl ...