Makes And The Product CodeForces - 817B (思维+构造)
2 seconds
256 megabytes
standard input
standard output
After returning from the army Makes received a gift — an array a consisting of n positive integer numbers. He hadn't been solving problems for a long time, so he became interested to answer a particular question: how many triples of indices (i, j, k) (i < j < k), such that ai·aj·akis minimum possible, are there in the array? Help him with it!
The first line of input contains a positive integer number n (3 ≤ n ≤ 105) — the number of elements in array a. The second line contains npositive integer numbers ai (1 ≤ ai ≤ 109) — the elements of a given array.
Print one number — the quantity of triples (i, j, k) such that i, j and k are pairwise distinct and ai·aj·ak is minimum possible.
4
1 1 1 1
4
5
1 3 2 3 4
2
6
1 3 3 1 3 2
1
In the first example Makes always chooses three ones out of four, and the number of ways to choose them is 4.
In the second example a triple of numbers (1, 2, 3) is chosen (numbers, not indices). Since there are two ways to choose an element 3, then the answer is 2.
In the third example a triple of numbers (1, 1, 2) is chosen, and there's only one way to choose indices.
思路:
分三种情况来逐一考虑,
a[1]=a[2]=a[3]
a[1],a[2]=a[3]
a[1],a[2],a[3]
根据题目要求的约数,只可能为这三种情况,
分类处理下就OK
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
map<ll,ll> m;
ll n;
ll a[maxn];
ll getpc(ll m,ll n)//m 中 选 n 个
{
long long ans=;
for(long long k=; k<=n; k++)
{
ans=(ans*(m-n+k))/k;
}
return ans;
}
int main()
{
gbtb;
cin>>n;
repd(i,,n)
{
cin>>a[i];
m[a[i]]=m[a[i]]+;
}
sort(a+,a++n);
ll ans=0ll;
set<ll> s;
repd(i,,)
{
s.insert(a[i]);
}
// 1 1 1 1 1 if(s.size()==)
{
ll sum=m[a[]];
// c 4 3
ans=getpc(sum,); }else if(s.size()==)
{
// 1 1 2 2 2 2 3
// 1 2 2 2 2 2
ll f=m[a[]];
if(f==)
{
ans=getpc(m[a[]],);
}else
{
ans=m[a[]];
}
}else
{
// 1 2 3 3 3 3
ans=m[a[]];
}
// cout<
cout<<ans<<endl;
return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}
Makes And The Product CodeForces - 817B (思维+构造)的更多相关文章
- A Mist of Florescence CodeForces - 989C(思维构造)
题意: 让你构造一个图,使得A,B,C,D的个数为给定的个数,上下左右连通的算一个. 哎呀 看看代码就懂了..emm..很好懂的 #include <bits/stdc++.h> usin ...
- hdu4671 思维构造
pid=4671">http://acm.hdu.edu.cn/showproblem.php? pid=4671 Problem Description Makomuno has N ...
- codeforces 1041 e 构造
Codeforces 1041 E 构造题. 给出一种操作,对于一棵树,去掉它的一条边.那么这颗树被分成两个部分,两个部分的分别的最大值就是这次操作的答案. 现在给出一棵树所有操作的结果,问能不能构造 ...
- 思维/构造 HDOJ 5353 Average
题目传送门 /* 思维/构造:赛后补的,当时觉得3题可以交差了,没想到这题也是可以做的.一看到这题就想到了UVA_11300(求最小交换数) 这题是简化版,只要判断行不行和行的方案就可以了,做法是枚举 ...
- Prefix Product Sequence CodeForces - 487C (数论,构造)
大意: 构造一个[1,2,...n]的排列, 使得前缀积模n为[0,1,...,n-1]的排列 这种构造都好巧妙啊, 大概翻一下官方题解好了 对于所有>=6的合数$n$, 有$(n-1)! \e ...
- Educational Codeforces Round 53C(二分,思维|构造)
#include<bits/stdc++.h>using namespace std;const int N=1e6+6;int x[N],y[N];int sx,sy,n;char s[ ...
- Codeforces 232A - Cycles (构造 + 思维)
题目链接: 232A - Cycles(点击打开) 题意: 要构成一个存在 \(k\) 个三元环的图,需要多少个点,输出顶点数 \(n\),并输出图. 题解: 题目中的任何图都可以用 \(90\)~ ...
- Vasya And The Matrix CodeForces - 1016D (思维+构造)
Now Vasya is taking an exam in mathematics. In order to get a good mark, Vasya needs to guess the ma ...
- CF1103C Johnny Solving (Codeforces Round #534 (Div. 1)) 思维+构造
题目传送门 https://codeforces.com/contest/1103/problem/C 题解 这个题还算一个有难度的不错的题目吧. 题目给出了两种回答方式: 找出一条长度 \(\geq ...
随机推荐
- java 一个实例
this 代替
- June 1. 2018 Week 22nd Friday
What makes life dreary is the want of motive. 没有了目的,生活便暗淡无光. We all have dreams about our future, we ...
- Maven中POM.XML详解
转自https://blog.csdn.net/jariwsz/article/details/19554137 我们先看一个简单的例子: <project xmlns="http:/ ...
- node基础—process对象(管理进程)
process对象概述 process对象是一个全局对象,可以在任何地方都能访问到他,通过这个对象提供的属性和方法,使我们可以对当前运行的程序的进程进行访问和控制 process 对象是一个 glob ...
- 6.03-news_xpath2
import re import requests # 安装支持 解析html和XML的解析库 lxml # pip install lxml from lxml import etree url = ...
- [Python] 练习代码
# from random import randrange # num = int(input('摇几次骰子: ')) # sides=int(input('筛子有几个面: ')) # sum=0 ...
- [matlab] 5.字符运算与微积分
首先介绍一下matlab里的符号计算 符号变量可以看成是数学中含参数 的表达式中的参数 matlab能进行像(a+b)(a-b)=a^2-b^2这样的计算 要进行符号计算首先要定义符号变量 定义符号对 ...
- Oracle 11gR1 RAC存储迁移方案
一.需求Oracle 11gR1 RAC存储计划更换,数据库版本为11.1.0.7,无停机维护窗口. 二.环境准备1.主机环境.OS环境2.安装11.1.0.6.0版Clusterware(linux ...
- P1577 切绳子(二分)
思路:先来分析一下数据范围,是1e4个数据,但是,是double类型,结果不超过0.01那么在绳子最大的情况下,单纯的找正确答案暴力的话就是1e7的时间复杂度,再乘上1e4的数据,这样肯定不行.那么很 ...
- maven tomcat jstl 异常
在跑一个带jstl的例子的时候,遇到了这样一个错误: org.springframework.web.util.NestedServletException: Handler processing f ...