NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记
count
题目大意:
长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出现一次。
对于每一个正整数\(k=1,..,n+1\),求出的本质不同的长度为\(k\)的子序列的数量。对\(10^9+7\)取模。
思路:
由于只会有一个数会重复,因此考虑重复的这个数取\(0\)个、\(1\)个和\(2\)个的情况,用组合数直接算即可。
源代码:
#include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=1e5+2,mod=1e9+7;
int a[N],fac[N],ifac[N],last[N];
void exgcd(const int &a,const int &b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline int inv(const int &x) {
int ret,tmp;
exgcd(x,mod,ret,tmp);
return ret;
}
inline int C(const int &n,const int &m) {
if(n<m) return 0;
return (int64)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
int main() {
const int n=getint();
for(register int i=fac[0]=1;i<=n+1;i++) {
fac[i]=(int64)fac[i-1]*i%mod;
}
ifac[n+1]=inv(fac[n+1]);
for(register int i=n+1;i>=1;i--) {
ifac[i-1]=(int64)ifac[i]*i%mod;
}
int l;
for(register int i=1;i<=n+1;i++) {
a[i]=getint();
if(last[a[i]]) l=i-last[a[i]];
last[a[i]]=i;
}
for(register int i=1;i<=n+1;i++) {
printf("%d\n",(C(n+1,i)-C(n-l,i-1)+mod)%mod);
}
return 0;
}
delete
题目大意:
长度为\(n(n\le10^6)\)的序列\(A\),从中删去恰好\(k\)个元素(右边的元素往左边移动),记\(cnt\)为新序列中\(A_i=i\)的元素个数。求\(cnt\)的最大值。
思路:
将\(A\)以\(i-A_i\)为第一关键字、\(A_i\)为第二关键字排序。就转化成了LIS问题。
时间复杂度\(\mathcal O(n\log n)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e6+1;
int n,m;
std::pair<int,int> a[N];
class FenwickTree {
private:
int val[N];
int lowbit(const int &x) const {
return x&-x;
}
public:
void modify(int p,const int &x) {
for(;p<=n;p+=lowbit(p)) {
val[p]=std::max(val[p],x);
}
}
int query(int p) const {
int ret=0;
for(;p;p-=lowbit(p)) {
ret=std::max(ret,val[p]);
}
return ret;
}
};
FenwickTree bit;
int main() {
n=getint(),m=n-getint();
for(register int i=1;i<=n;i++) {
const int &x=getint();
a[i]=std::make_pair(i-x,x);
}
std::sort(&a[1],&a[n]+1);
int ans=0;
for(register int i=1;i<=n;i++) {
if(a[i].first<0) continue;
if(a[i].second>n) continue;
const int tmp=bit.query(a[i].second-1)+1;
if(tmp>m) continue;
bit.modify(a[i].second,tmp);
if(a[i].first<=n-m&&a[i].second<=m) ans=std::max(ans,tmp);
}
printf("%d\n",ans);
return 0;
}
power
题目大意:
一棵包含\(n(n\le10^5)\)个节点的树,对于这棵树中的一个连通块,它的能量为它拥有的节点中编号连续的最长的一段。求大小不超过\(k\)的连通块的最大能量值。
思路:
包含若干点的最小连通块的大小是这些点按照DFS序排序后,(相邻点之间距离和+首尾两点距离)/2+1。
使用尺取法枚举连续段,同时用set按照DFS序维护这些结点,同时维护每一时刻连通块的大小即可。
时间复杂度\(\mathcal O(n\log n)\)。
源代码:
#include<set>
#include<cstdio>
#include<cctype>
#include<vector>
#include<climits>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e5+1,logN=17;
std::vector<int> e[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e[v].push_back(u);
}
int dfn[N],id[N],tmp,dep[N],anc[N][logN];
inline int lg2(const float &x) {
return ((unsigned&)x>>23&255)-127;
}
void dfs(const int &x,const int &par) {
anc[x][0]=par;
dep[x]=dep[par]+1;
id[dfn[x]=++dfn[0]]=x;
for(register int i=1;i<=lg2(dep[x]);i++) {
anc[x][i]=anc[anc[x][i-1]][i-1];
}
for(auto &y:e[x]) {
if(y==par) continue;
dfs(y,x);
}
}
inline int lca(int x,int y) {
if(dep[x]<dep[y]) std::swap(x,y);
for(register int i=lg2(dep[x]-dep[y]);i>=0;i--) {
if(dep[anc[x][i]]>=dep[y]) x=anc[x][i];
}
for(register int i=lg2(dep[x]);i>=0;i--) {
if(anc[x][i]!=anc[y][i]) {
x=anc[x][i];
y=anc[y][i];
}
}
return x==y?x:anc[x][0];
}
inline int dist(const int &x,const int &y) {
const int z=lca(x,y);
return dep[x]+dep[y]-dep[z]*2;
}
std::set<int> set;
inline void ins(const int &x) {
const auto p=--set.lower_bound(x);
const auto q=set.upper_bound(x);
if(*p!=INT_MIN) tmp+=dist(id[x],id[*p]);
if(*q!=INT_MAX) tmp+=dist(id[x],id[*q]);
if(*p!=INT_MIN&&*q!=INT_MAX) tmp-=dist(id[*p],id[*q]);
set.insert(x);
}
inline void del(const int &x) {
const auto p=--set.lower_bound(x);
const auto q=set.upper_bound(x);
if(*p!=INT_MIN) tmp-=dist(id[x],id[*p]);
if(*q!=INT_MAX) tmp-=dist(id[x],id[*q]);
if(*p!=INT_MIN&&*q!=INT_MAX) tmp+=dist(id[*p],id[*q]);
set.erase(x);
}
inline int dist2() {
const int x=*++set.begin();
const int y=*++set.rbegin();
if(x==INT_MIN||y==INT_MAX) return 0;
return dist(id[x],id[y]);
}
int main() {
const int n=getint(),k=getint();
for(register int i=1;i<n;i++) {
add_edge(getint(),getint());
}
dfs(1,0);
int ans=0;
set.insert(INT_MAX);
set.insert(INT_MIN);
ins(1);
for(register int p=1,q=1;q<=n;ins(dfn[++q])) {
while((tmp+dist2())/2+1>k) del(dfn[p++]);
ans=std::max(ans,q-p+1);
}
printf("%d\n",ans);
return 0;
}
NOI.AC NOIP模拟赛 第五场 游记的更多相关文章
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)
题目链接:http://noi.ac/contest/12/problem/37 题目: 小W收到了一张纸带,纸带上有 n个位置.现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色 ...
- NOI.AC NOIP模拟赛R3解题报告
心路历程 预计得分:\(100+100+50=250\) 实际得分:\(10 +100 +50 = 160\) 三道原题,真好.T2做过,T1写了个错误思路,T3写了写50分状压dp. 整场考试实际在 ...
- NOI.AC WC模拟赛
4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...
- 东北育才 NOIP模拟赛第1场
终于400了.这套题很鬼畜.两道贪心. GRACE sort过后,不能直接统计,本人毫无多想,相同的直接放在一起.结果太多人AC. SUM sigma+异或和(可使用前缀和处理),本人毫无考虑乱MOD ...
随机推荐
- python---django中orm的使用(3)admin配置与使用
新建项目,并开启 python manage.py runserver 访问admin页面 http://127.0.0.1:8080/admin 补充:若是发现admin页面样式丢失:可能是因为在s ...
- mysql复杂查询(一)
所谓复杂查询,指涉及多个表.具有嵌套等复杂结构的查询.这里简要介绍典型的几种复杂查询格式. 一.连接查询 连接是区别关系与非关系系统的最重要的标志.通过连接运算符可以实现多个表查询.连接查询主要包括内 ...
- javascript设计模式开篇:Javascript 接口的实现
javascript语言不像java. c#. c++等面向对象语言那样有完备的接口支持,在javascript中,接口的实现有三种方式,分别为注释描述.属性检查.鸭式变形.注释描述实现起来最为简单, ...
- CodeForces 1059C
Description Let's call the following process a transformation of a sequence of length nn . If the se ...
- HDU 2544 最短路 最短路问题
解题报告: 这题就是求两个单源点之间的最小距离,属于最短路问题,由于数据量很小,只有100,所以这题可以用弗洛伊德也可以用迪杰斯特拉,都可以过,但是用迪杰斯特拉会快一点,但用弗洛伊德的代码会稍短一点, ...
- python字典转datafarm,pandas
# coding:utf-8 import json import pandas as pd with open("./article_file/all_article.json" ...
- cordova app 监听物理返回键
物理返回键指的是手机系统自带的返回按钮,通过cordova监听返回按钮操作,可以禁止某些页面的返回操作,以及实现点击两次返回按钮退出应用. var pageUrl = window.location. ...
- Ettercap之ARP+DNS欺骗
1.网络攻击拓扑环境 网关:192.168.133.2 攻击者:192.168.133.128 受害者:192.168.133.137 2.原理讲解 ARP欺骗 简介:ARP(Address Reso ...
- python格式化输出【转】
今天写代码时,需要统一化输出格式进行,一时想不起具体细节,用了最笨的方法,现在讲常见的方法进行一个总结. 一.格式化输出 1.整数的输出 直接使用'%d'代替可输入十进制数字: >>> ...
- 在Docker中运行EOS(MAC版)
在Docker中运行EOS(MAC版) 在Docker中也可以简单快速的构建EOS.IO.笔者在Mac平台下参考官方文档躺了一次河.记录如下: 安装依赖 Docker 版本 17.05或者更高 tes ...