Xtreme8.0 - Play with GCD dp
Play with GCD
题目连接:
https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/play-with-gcd
Description
Minka is very smart kid who recently started learning computer programming.
He learned how to calculate the Greatest Common Divisor (GCD) of given numbers. The GCD http://en.wikipedia.org/wiki/Greatest_common_divisor of k numbers say [n1,n2,n3… nk] is the largest positive integer that divides all these numbers without any remainder. You may find out more about the GCD and the way it is calculated on the Wikipedia website.
Minka has N (1 <= N <= 10^5) balls and there is a number V (1 <= V <= 10^4) written on every ball. Now Minka has to perform Q queries, and in each query he wants to know the number of possible ways he can choose balls out of the N balls, so that GCD of the numbers written on the chosen balls equals to the number X of each query. Although he already knows the answer for each query, he would still like you to check if you can also find answer to his queries.
Since number of ways can be very large, your program should output the number of ways modulus 10^9+7.
Notes:
- There can be at most 100 distinct numbers written on N balls.
- By definition, the GCD is only defined for 2 or more numbers. For this problem, however, we will consider that the GCD of a single number may also defined and in such case the GCD of a single number will be equal to the number itself (i.e. the GCD of 2 is 2. Please refer to the explanation of Sample Input 1 for more details).
Input
The first line of each test file contains an integer N (1 <= N <= 10^5) denoting the number of balls.
The next line contains N space separated integer numbers, each one representing the number written on each of the N balls. The ith number (Vi) corresponds to the number written on the ith ball (1 <= Vi <= 10^4).
The third line contains an integer Q (1 <= Q <= 10^4) representing the number of GCD queries that will have to be performed.
Finally, Q lines follow, each one containing an integer X (1 <= X <= 10^4) corresponding to the GCD of each query.
Output
Your program should output the number of ways modulus 10^9+7 that balls can be drawn from the set, so that their GCD equals the number X corresponding to each query.
Note: There is a newline character at the end of the last line of the output.
Sample Input
5
2 3 5 6 6
2
2
5
Sample Output
4
1
Hint
We have 5 balls in the set, labeled with numbers [2, 3, 5, 6, 6] respectively. For the first query (X=2), there are in total 4 (distinct) ways by which we may choose balls so that their GCD equals 2, meaning:
a) {1, 4} (i.e. ball 1 labeled with number 2 and ball 4 labeled with number 6)
b) {1, 5} (i.e. ball 1 labeled with number 2 and ball 5 labeled with number 6)
c) {1, 4, 5} (i.e. ball 1 labeled with number 2, ball 4 labeled with number 6 and ball 5 labeled with number 6)
d) {1} (i.e. ball 1 labeled with number 2 since according to our definition of GCD, the GCD of 2 would equal 2)
Regarding the second query (X=5), there is only one way to choose balls so that their GCD equals 5, which is to choose only ball 3 (labeled with number 5).
题意
给你n个数,问你里面有多少个集合的gcd为x。
最多有100个不同的数。
题解
离散化之后乱dp一波就好了。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 100005;
const int mod = 1e9+7;
int p[maxn],dp[10005],n;
int add(int x,int y){
x+=y;
if(x>=mod)x-=mod;
return x;
}
int gcd(int x,int y)
{
if(y==0)return x;
return gcd(y,x%y);
}
vector<int>V;
map<int,int> H;
int a[maxn];
long long two[maxn];
int main()
{
scanf("%d",&n);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
scanf("%d",&p[i]);
V.push_back(p[i]);
}
sort(V.begin(),V.end());
V.erase(unique(V.begin(),V.end()),V.end());
for(int i=0;i<V.size();i++)
H[V[i]]=i;
for(int i=1;i<=n;i++)
a[H[p[i]]]++;
two[0]=1;
for(int i=1;i<=n;i++)
two[i]=two[i-1]*2LL%mod;
for(int i=0;i<V.size();i++)
{
for(int j=1;j<=10000;j++)
dp[gcd(j,V[i])]=add(dp[gcd(j,V[i])],1LL*(two[a[i]]-1)*dp[j]%mod);
dp[V[i]]=add(dp[V[i]],(two[a[i]]-1));
}
int m;scanf("%d",&m);
for(int i=1;i<=m;i++)
{
int x;
scanf("%d",&x);
printf("%d\n",dp[x]);
}
}
Xtreme8.0 - Play with GCD dp的更多相关文章
- Xtreme8.0 - Kabloom dp
Xtreme8.0 - Kabloom 题目连接: https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/kablo ...
- Xtreme8.0 - Kabloom 动态规划
Xtreme8.0 - Kabloom 题目连接: https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/kablo ...
- Xtreme8.0 - Magic Square 水题
Xtreme8.0 - Magic Square 题目连接: https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/ ...
- LightOJ - 1140 统计0的数位 数位DP
注意以下几点: 搜索维度非约束条件的都要记录,否则大概率出错,比如_0 st参数传递和_0的互相影响要分辨清楚 num==-1就要返回0而不是1 #include<iostream> #i ...
- [原]携程预选赛A题-聪明的猴子-GCD+DP
题目: 聪明的猴子 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...
- AIM Tech Round (Div. 2) D. Array GCD dp
D. Array GCD 题目连接: http://codeforces.com/contest/624/problem/D Description You are given array ai of ...
- HDU 5656 CA Loves GCD dp
CA Loves GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5656 Description CA is a fine comrade w ...
- D - 稳住GCD DP
http://acm.uestc.edu.cn/#/problem/show/923 给定一堆数字,求其所有数字的gcd. 现在要删除最多的数字,使得剩下的数字的gcd和原来的一样. 设dp[i][v ...
- UESTC 923 稳住GCD DP + GCD
定义:dp[i][j] 表示 在前i个数中,使整个gcd值为j时最少取的数个数. 则有方程: gg = gcd(a[i],j) gg == j : 添加这个数gcd不变,不添加, dp[i][j] ...
随机推荐
- SpringMvc数据校验@Valid等注解的使用与工具类抽取
最近在重构老项目的代码,发现校验入参占用了很多代码,之前我对这一块的认识局限于使用StringUtils等工具来多个if块进行判断,代码是没什么问题,但是总写这些令人生烦,毕竟写代码也要讲究优雅的嘛, ...
- argunlar 1.0.1 【数据绑定】
<!DOCTYPE html><html lang="en" ng-app><head> <meta charset="U ...
- Java基础打包以及批处理命令运行
1.前期准备
- Space Replacement
Write a method to replace all spaces in a string with %20. The string is given in a characters array ...
- 大数据系列之分布式计算批处理引擎MapReduce实践-排序
清明刚过,该来学习点新的知识点了. 上次说到关于MapReduce对于文本中词频的统计使用WordCount.如果还有同学不熟悉的可以参考博文大数据系列之分布式计算批处理引擎MapReduce实践. ...
- 数组的splice方法
splice 该方法向或者从数组中添加或者删除项目,返回被删除的项目,同时也会改变原数组. splice(index,howmany,item1,...itemX) index参数:必须,整数,规定添 ...
- Java 基本语法---Java方法
Java 基本语法---Java方法 0.概述 方法:就是用来解决一类问题的代码的有序组合,是一个功能模块: 在方法部分,只使用对象名词调用方法: Scanner sc = new Scanner(S ...
- react 的JSX语法需要注意哪些点?
注释方式 ReactDOM.render( <div> {/*JSX 中的注释方式*/} </div>, document.getElementById('root') ) j ...
- Angular2 CLI安装
官方文档: https://angular.cn/docs/ts/latest/cli-quickstart.html 实现步骤: 1.设置开发环境 2.创建新项目以及应用的骨架 3.启动开启服务 4 ...
- 【军哥谈CI框架】之CI中集成百度UEditor
Hello,各位亲,新的一周来临啦,很高兴这么快又跟大家伙见面!话说上一回,军哥带大家用JQuery写了一个城市级联菜单的例子 ,不知道亲们学会了多少,是否自己可以独立写出来了呢. 军哥很是期待大家学 ...