整体二分+二维树状数组。

好题啊!写了一个来小时。

一看这道题,主席树不会搞,只能用离线的做法了。

整体二分真是个好东西,啥都可以搞,尤其是区间第 \(k\) 大这种东西。

我们二分答案,然后用二维树状数组实现 \(\log^2 n\) 的单点修改,时间复杂度 \(O(q\log^2 n\log 10^9)\)

\(Code\ Below:\)

#include <bits/stdc++.h>
#define lowbit(x) ((x)&(-(x)))
#define id(x,y) (((x)-1)*n+(y))
using namespace std;
const int maxn=300000+10;
const int lim=1e9;
int n,m,c[510][510],ans[maxn]; struct Element{
int x,y,k;
}e[maxn],e1[maxn],e2[maxn]; bool cmp(Element a,Element b){
return a.k<b.k;
} struct Query{
int x1,y1,x2,y2,k,id;
}q[maxn],q1[maxn],q2[maxn]; inline int read(){
register int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return (f==1)?x:-x;
} inline void add(int x,int y,int z){
for(int i=x;i<=n;i+=lowbit(i))
for(int j=y;j<=n;j+=lowbit(j)) c[i][j]+=z;
} inline int sum(int x,int y){
int ans=0;
for(int i=x;i;i-=lowbit(i))
for(int j=y;j;j-=lowbit(j)) ans+=c[i][j];
return ans;
} void solve(int L,int R,int Le,int Ri,int l,int r){
if(L>R||Le>Ri) return ;
if(l==r){
for(int i=Le;i<=Ri;i++) ans[q[i].id]=l;
return ;
}
int mid=(l+r)>>1,cnt1=0,cnt2=0,tot1=0,tot2=0,val;
for(int i=L;i<=R;i++){
if(e[i].k<=mid) add(e[i].x,e[i].y,1),e1[++cnt1]=e[i];
else e2[++cnt2]=e[i];
}
for(int i=1;i<=cnt1;i++) e[L+i-1]=e1[i];
for(int i=1;i<=cnt2;i++) e[L+i+cnt1-1]=e2[i];
for(int i=Le;i<=Ri;i++){
val=sum(q[i].x2,q[i].y2)-sum(q[i].x1-1,q[i].y2)-sum(q[i].x2,q[i].y1-1)+sum(q[i].x1-1,q[i].y1-1);
if(val>=q[i].k) q1[++tot1]=q[i];
else q[i].k-=val,q2[++tot2]=q[i];
}
for(int i=L;i<=L+cnt1-1;i++) add(e[i].x,e[i].y,-1);
for(int i=1;i<=tot1;i++) q[Le+i-1]=q1[i];
for(int i=1;i<=tot2;i++) q[Le+i+tot1-1]=q2[i];
solve(L,L+cnt1-1,Le,Le+tot1-1,l,mid);
solve(L+cnt1,R,Le+tot1,Ri,mid+1,r);
} int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) e[id(i,j)].x=i,e[id(i,j)].y=j,e[id(i,j)].k=read();
sort(e+1,e+n*n+1,cmp);
for(int i=1;i<=m;i++) q[i].x1=read(),q[i].y1=read(),q[i].x2=read(),q[i].y2=read(),q[i].k=read(),q[i].id=i;
solve(1,n*n,1,m,0,lim);
for(int i=1;i<=m;i++) printf("%d\n",ans[i]);
return 0;
}

[BZOJ2738]矩阵乘法(整体二分+二维树状数组)的更多相关文章

  1. BZOJ2738矩阵乘法——整体二分+二维树状数组

    题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入   第一行两个数N,Q,表示矩阵大小和询问组数:接下来N行N列一共N*N个数,表示这个矩阵:再接下来Q行每行5 ...

  2. [BZOJ2738]矩阵乘法 整体二分+二维树状数组

    2738: 矩阵乘法 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1643  Solved: 715[Submit][Status][Discuss ...

  3. 【bzoj2738】矩阵乘法 整体二分+二维树状数组

    题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入 第一行两个数N,Q,表示矩阵大小和询问组数:接下来N行N列一共N*N个数,表示这个矩阵:再接下来Q行每行5个数 ...

  4. BZOJ.2738.矩阵乘法(整体二分 二维树状数组)

    题目链接 BZOJ 洛谷 整体二分.把求序列第K小的树状数组改成二维树状数组就行了. 初始答案区间有点大,离散化一下. 因为这题是一开始给点,之后询问,so可以先处理该区间值在l~mid的修改,再处理 ...

  5. BZOJ 2738 矩阵乘法(整体二分+二维树状数组)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2738 [题目大意] 给出一个方格图,询问要求求出矩阵内第k小的元素 [题解] 我们对答 ...

  6. 【清澄A1333】【整体二分+二维树状数组】矩阵乘法(梁盾)

    试题来源 2012中国国家集训队命题答辩 问题描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入格式 第一行两个数N,Q,表示矩阵大小和询问组数: 接下来N行N列一共 ...

  7. 洛谷1527(bzoj2738)矩阵乘法——二维树状数组+整体二分

    题目:https://www.luogu.org/problemnew/show/P1527 不难想到(?)可以用二维树状数组.但维护什么?怎么查询是难点. 因为求第k小,可以考虑记权值树状数组,把比 ...

  8. 洛谷P1527 [国家集训队] 矩阵乘法 [整体二分,二维树状数组]

    题目传送门 矩阵乘法 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入格式: 第一行两个数N,Q,表示矩阵大小和询问组数: 接下来N行N列一共N* ...

  9. 洛谷P1527 矩阵乘法——二维树状数组+整体二分

    题目:https://www.luogu.org/problemnew/show/P1527 整体二分,先把所有询问都存下来: 然后二分一个值,小于它的加到二维树状数组的前缀和里,判断一遍所有询问,就 ...

随机推荐

  1. 第五周 PSP 燃尽图 以及 进度条总结

    1.PSP DATE START-TIME END-TIME EVENT           DELTA TYPE 3.12 9.30 11.30 环境搭建 音乐30min QQ25min       ...

  2. Alpha 冲刺 (1/10)

    队名 火箭少男100 组长博客 林燊大哥 作业博客 Alpha 冲鸭! 成员冲刺阶段情况 林燊(组长) 过去两天完成了哪些任务 协调各成员之间的工作,对多个目标检测及文字识别模型进行评估.实验,选取较 ...

  3. ubuntu samba共享后windows读写文件都是以nogroup问题

    添加smb账号 sudo smbpasswd -a xxx 如果报错:Failed to add entry for user xxx 则是因为这个账号不存在 添加成功以后,过一会就可以重新登陆了(u ...

  4. delphi 中如何访问另一个类中到私有方法?(转载)

    原始连接 http://rvelthuis.blogspot.tw/2018/01/accessing-private-methods-of-another.html Accessing privat ...

  5. ubuntu安装rubyOnRails

    https://gorails.com/setup/ubuntu/16.04#ruby-rbenv 文章很详细

  6. (4)4 larger-than-life lessons from soap operas

    https://www.ted.com/talks/kate_adams_4_larger_than_life_lessons_from_soap_operas/transcript 00:12In ...

  7. Router pipeline

    from 2013-HPCA-Breaking the On-Chip Latency Barrier Using SMART book_Principles and Practices of Int ...

  8. Mybatis在oracle数据库中插入数据后返回自增值ID

    1.将id设置成自增序列 CREATE OR REPLACE TRIGGER "DATALIB"."TRIG_USER_ADD" BEFORE INSERT O ...

  9. ubuntu上安装win7系统(64位的)

    http://www.linuxidc.com/Linux/2012-11/74195.htm deb文件在ubuntu上直接用dpkg -i xxx.deb 如果虚拟机上只显示32位,则可能是cpu ...

  10. 第二章(java程序设计)第三章(语言基础)

    第二章 2.1 对象 对象的概念是由现实世界引入问题模型: 对象包含有:状态和行为.具体地来说是: 数据封装:对象的方法的作用就是:将内部变量封装起来,提供给外界交互的窗口.(实现对数据的隐藏) 继承 ...