[Luogu5048] [Ynoi2019模拟赛]Yuno loves sqrt technology III[分块]
题意
长为 \(n\) 的序列,询问区间众数,强制在线。
\(n\leq 5\times 10^5\).
分析
考虑分块,暴力统计出整块到整块之间的众数次数。
然后答案还可能出现在两边的两个独立的块中,开 \(vector\) 记录每种数字出现的位置集合,然后暴力判断两边两个块中的元素出现的次数。发现并不需要知道具体在 \([l,r]\) 内出现了多少次,而只需要知道 \([l,r]\) 中是否有 \(ans+1\)个该种颜色。
总时间复杂度为 \(O(n\sqrt n)\)。
代码
#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].lst,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=5e5 + 7,M=720;
int n,m,len,sz,tp;
int V[N],bl[N],a[N],p[N],cnt[N],f[M][M],st[N],vc[N];
int L(int x){return (x-1)*sz+1;}
int R(int x){return min(n,x*sz);}
vector<int>pos[N];
int solve(int l,int r){
int res=0;
if(bl[l]==bl[r]){
for(int i=l;i<=r;++i){
st[++tp]=a[i];
Max(res,++cnt[a[i]]);
}
for(;tp;--tp) cnt[st[tp]]=0;
return res;
}
res=f[bl[l]+1][bl[r]-1];
for(int i=R(bl[l]);i>=l;--i){
int x=p[i],y=x+res;
if(y<vc[a[i]]&&pos[a[i]][y]<=r) ++res;
}
for(int i=L(bl[r]);i<=r;++i){
int y=p[i],x=y-res;
if(x>=0&&pos[a[i]][x]>=l) ++res;
}
return res;
}
int main(){
n=gi(),m=gi();sz=sqrt(n);
rep(i,1,n) a[i]=gi(),bl[i]=(i-1)/sz+1,V[i]=a[i];
sort(V+1,V+1+n);
len=unique(V+1,V+1+n)-V-1;
rep(i,1,n) a[i]=lower_bound(V+1,V+1+len,a[i])-V,pos[a[i]].pb(i),p[i]=pos[a[i]].size()-1;
rep(i,1,len) vc[i]=pos[i].size();
for(int p=1;p<=bl[n];++p){
int tmp=0,tp=0;
for(int i=L(p);i<=n;++i){
Max(tmp,++cnt[a[i]]);
st[++tp]=a[i];
if(i%sz==0) f[p][bl[i]]=tmp;
}
for(;tp;--tp) cnt[st[tp]]=0;
}
int lastans=0;
while(m--){
int l=gi()^lastans,r=gi()^lastans;
if(l>r) swap(l,r);
printf("%d\n",lastans=solve(l,r));
}
return 0;
}
[Luogu5048] [Ynoi2019模拟赛]Yuno loves sqrt technology III[分块]的更多相关文章
- [luogu5048] [Ynoi2019模拟赛] Yuno loves sqrt technology III
题目链接 洛谷. Solution 思路同[BZOJ2724] [Violet 6]蒲公英,只不过由于lxl过于毒瘤,我们有一些更巧妙的操作. 首先还是预处理\(f[l][r]\)表示\(l\sim ...
- Luogu P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III 分块
这才是真正的$N\sqrt{N}$吧$qwq$ 记录每个数$vl$出现的位置$s[vl]$,和每个数$a[i]=vl$是第几个$vl$,记为$P[i]$,然后预处理出块$[i,j]$区间的答案$f[i ...
- [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III
题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...
- 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)
传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...
- P5048 [[Ynoi2019模拟赛]Yuno loves sqrt technology III]
为什么我感觉这题难度虚高啊-- 区间众数的出现次数- 计算器算一下 \(\sqrt 500000 = 708\) 然后我们发现这题的突破口? 考虑分块出来[L,R]块的众数出现个数 用 \(\text ...
- 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)
题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...
- [Ynoi2019模拟赛]Yuno loves sqrt technology III
题目大意: 给你一个长为n的序列a,m次询问,每次查询一个区间的众数的出现次数,强制在线. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 首先得离散化. 分块后,预处理Fi, ...
- [Ynoi2019模拟赛]Yuno loves sqrt technology II(二次离线莫队)
二次离线莫队. 终于懂了 \(lxl\) 大爷发明的二次离线莫队,\(\%\%\%lxl\) 二次离线莫队,顾名思义就是将莫队离线两次.那怎么离线两次呢? 每当我们将 \([l,r]\) 移动右端点到 ...
- [Ynoi2019模拟赛]Yuno loves sqrt technology II
题目大意: 给定一个长为\(n\)的序列,\(m\)次询问,每次查询一个区间的逆序对数. 32MB. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 二次离线莫队. 对于每个区 ...
随机推荐
- SQL Server 请求失败或服务未及时响应。有关详细信息,请参见事件日志或其它适合的错误日志
在打开数据库的时候,突然出现异常错误,然后我去关闭sql server 服务,然后重启服务的时候,不能重启,出现以下错误 “请求失败或服务未及时响应.有关详细信息,请参见事件日志或其它适合的错误日志” ...
- 转:.NET 面试题汇总(一)
目录 本次给大家介绍的是我收集以及自己个人保存一些.NET面试题 简介 1.C# 值类型和引用类型的区别 2.如何使得一个类型可以在foreach 语句中使用 3.sealed修饰的类有什么特点 4. ...
- How HashMap works in java 2
https://www.javacodegeeks.com/2014/03/how-hashmap-works-in-java.html Most common interview questio ...
- 【转】学习Linux守护进程详细笔记
[原文]https://www.toutiao.com/i6566814959966093837/ Linux守护进程 一. 守护进程概述 守护进程,也就是通常所说的Daemon进程,是Linux中的 ...
- redis 配置文件示例
# redis 配置文件示例 # 当你需要为某个配置项指定内存大小的时候,必须要带上单位,# 通常的格式就是 1k 5gb 4m 等酱紫:## 1k => 1000 bytes# 1kb =& ...
- Django商城项目笔记No.17用户部分-用户中心用户地址管理
收货地址管理 首先就是新增地址 看图分析所需要保存的字段 因为是用户的地址,所以在users应用中的models创建模型类 class Address(BaseModel): "" ...
- 13.4SolrCloud集群使用手册之CRUD
转载请出自出处:http://www.cnblogs.com/hd3013779515/ Student.java package cn.ljh.ssm.test; import org.apache ...
- hdu 1754 I Hate It (线段树功能:单点更新和区间最值)
版权声明:本文为博主原创文章.未经博主同意不得转载.vasttian https://blog.csdn.net/u012860063/article/details/32982923 转载请注明出处 ...
- stm32 boot0 boot1的启动方式
STM32三种启动模式对应的存储介质均是芯片内置的,它们是: 1)用户闪存 = 芯片内置的Flash. 2)SRAM = 芯片内置的RAM区,就是内存啦. 3)系统存储器 = 芯片内部一块特定的区域, ...
- JS编写简单的弹窗插件(含有demo和源码)
最近项目做完了 事情不是很多,今天正好也在调休,所以趁着这个时间研究了一下简易的JS弹窗功能,当然网上这块插件非常多,本人也没有仔细看网上的插件源码 只是凭着日常使用过的弹窗插件有这么多功能 来实现自 ...