【BZOJ1489】[HNOI2009]双递增序列(动态规划)

题面

BZOJ

洛谷

题解

这\(dp\)奇奇怪怪的,设\(f[i][j]\)表示前\(i\)个数中,第一个数列选了\(j\)个数,第二个数列的最大值的最小情况。

那么转移如下,如果\(a_i>a_{i-1}\),那么可以直接接在第一个序列后面,\(f[i][j]=f[i-1][j-1]\)

然后考虑怎么样接在第二个序列后面,如果\(a_i>f[i-1][i-j]\),那么就可以接在第二个序列后面,即从前\(i-1\)个位置中,有一个序列的长度为\(i-j\)(第二个序列),那么我就可以把它接在这个序列后面。

这\(dp\)奇奇怪怪,我自己都觉得上面说得好假啊。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAX 2050
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,a[MAX];
int f[MAX][MAX];
int main()
{
int T=read();
while(T--)
{
n=read();for(int i=1;i<=n;++i)a[i]=read();
memset(f,63,sizeof(f));f[0][0]=-1;a[0]=-1;
for(int i=1;i<=n;++i)
for(int j=0;j<=i&&j<=n/2;++j)
{
if(f[i-1][i-j]<a[i])f[i][j]=min(f[i][j],a[i-1]);
if(a[i]>a[i-1])f[i][j]=min(f[i][j],f[i-1][j]);
}
puts(f[n][n/2]<1e9?"Yes!":"No!");
}
return 0;
}

【BZOJ1489】[HNOI2009]双递增序列(动态规划)的更多相关文章

  1. [HNOI2009]双递增序列(动态规划,序列dp)

    感觉这个题还蛮难想的. 首先状态特别难想.设\(dp[i][j]\)表示前i个数,2序列的长度为j的情况下,2序列的最后一个数的最小值. 其中1序列为上一个数所在的序列,2序列为另外一个序列. 这样设 ...

  2. [luogu4728 HNOI2009] 双递增序列 (dp)

    传送门 Solution 前几天刚做了类似题,这种将一个序列拆分为两个单调序列的题一般都是设\(dp[i]\)表示i为一个单调序列的末尾时,另一个序列的末尾是多少 然后应用贪心的思想,在这道题中就是让 ...

  3. P4728 [HNOI2009]双递增序列

    题意 这个DP状态有点神. 首先考虑一个最暴力的状态:\(f_{i,j,k,u}\)表示第一个选了\(i\)个,第二个选了\(j\)个,第一个结尾为\(k\),第二个结尾为\(u\)是否可行. 现在考 ...

  4. [HNOI2009]双递增序列(洛谷P4728)+小烈送菜(内部训练题)——奇妙的dp

    博主学习本题的经过嘤嘤嘤: 7.22 : 听学长讲(一知半解)--自己推(推不出来)--网上看题解--以为自己会了(网上题解是错的)--发现错误以后又自己推(没推出来)--给学长发邮件--得到正确解法 ...

  5. [HNOI2009]双递增序列

    不难发现本题贪心是不好做的,可以考虑 \(dp\). 首先的一个想法就是令 \(dp_{i, j, k, l}\) 表示当前选到第 \(i\) 个位置,当前第一个序列选了 \(j\) 个数,当前第一个 ...

  6. luogu4728 双递增序列 (dp)

    设f[i][j]表示以i位置为第一个序列的结尾,第一个序列的长度为j,第二个序列的结尾的最小值 那么对于f[i][j],有转移$f[i+1][j+1]=min\{f[i+1][j+1],f[i][j] ...

  7. BZOJ 1489: [HNOI2009]双递增序( dp )

    dp(i, j)表示选第i个, 且当前序列长度为j, 另一个序列的最后一个元素的最小值...然后根据上一个是哪个序列选的讨论一下就行了...奇怪的dp... --------------------- ...

  8. [BZOJ 1489][HNOI2009]双递增序

    传送门 满满的负罪感,昨晚的刷题历程:写几道难题吧-->算了,还是只切道水题吧-->RNG赢了...... 背包一下就行了 #include <bits/stdc++.h> u ...

  9. [LeetCode] Number of Longest Increasing Subsequence 最长递增序列的个数

    Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...

随机推荐

  1. Docker学习笔记 — 开启Docker远程访问

    默认情况下,Docker守护进程会生成一个socket(/var/run/docker.sock)文件来进行本地进程通信,而不会监听任何端口,因此只能在本地使用docker客户端或者使用Docker ...

  2. PCIE_DMA实例四:xapp1052在Xilinx 7系列(KC705/VC709)FPGA上的移植

    PCIE_DMA实例四:xapp1052在Xilinx 7系列(KC705/VC709)FPGA上的移植 一:前言 这段时间有个朋友加微信请求帮忙调试一块PCIe采集卡.该采集卡使用xilinx xc ...

  3. XSS跨站攻击(二)

    本人最近在学习XSS,想总结一下常见的XSS攻击的几种情况,刚好看到<防御 XSS 的七条原则>这篇文章,里面讲的七条防御原则不正是针对XSS的几种利用方式吗?于是,借来学习一下. 原则1 ...

  4. VB6 选择文件夹路径

    '--------------------------------------------------------------------------------------- ' Module : ...

  5. 20155331 《网络对抗》 Exp6 信息搜集与漏洞扫描

    20155331 <网络对抗> Exp6 信息搜集与漏洞扫描 实验问题回答 哪些组织负责DNS,IP的管理 答:美国政府授权ICANN统一管理全球根服务器,负责全球的域名根服务器.DNS和 ...

  6. WPF编程,通过Path类型制作沿路径运动的动画另一种方法。

    原文:WPF编程,通过Path类型制作沿路径运动的动画另一种方法. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/d ...

  7. S5PV210 DDR2初始化 28个步骤总结

    看了一套视频,感觉DDR这个部分将的非常细致也很好,于是把视频内容花了一个多星期作了总结. 这个视频就是不知道是谁讲的,做好事不留名啊---那位知道告诉我哈-- 平台:S5PV210 DDR: 兼容 ...

  8. 我的SQL SERVER数据库会装满吗?

    概述 今天有个客户问我一个蛮有意思的问题.我使用的SQL SERVER 2008数据库,目前数据库130多G,其中某个表的记录条数就有3亿1千多万,占用了50多G.那SQL SERVER 数据库中的表 ...

  9. [转]申瓯 JSY2000-06 程控电话交换机呼叫转移设置

    说明:若申瓯程控电话交换机分机有事不在位置上或遇忙分机正忙时为使某些重要来话不丢失,可设置将呼入本机的电话转移至其他分机及公网固定电话或手机.电话交换机使用了本功能不管分机用户在什么地方都能接听到办公 ...

  10. C# List left join

    public class Test1 { public int ID { get; set; } public string Name { get; set; } } public class Tes ...