How many integers can you find

Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3315    Accepted Submission(s): 937

Problem Description
  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
 
Input
  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
 
Output
  For each case, output the number.
 
Sample Input
12 2
2 3
 
Sample Output
7
 
Author
wangye
 
Source
 


题目大意:很简单的题目,直接看意思就懂哈!


      解题思路:容斥定理,加奇减偶,开始忘记求lcm了,囧!!而且开始还特判0的情况,题目中说的必须是除以,所以0不是一个解。。。开始竟然以为需要是因子就可以了。想通了之后直接先筛选一次,把0都筛选出去。

      题目地址:How many integers can you find

AC代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
using namespace std;
__int64 sum;
int n,m;
int a[25];
int b[25];
int visi[25]; __int64 gcd(__int64 m,__int64 n)
{
__int64 tmp;
while(n)
{
tmp=m%n;
m=n;
n=tmp;
}
return m;
} __int64 lcm(__int64 m,__int64 n)
{
return m/gcd(m,n)*n;
} void cal()
{
int flag=0,i;
__int64 t=1;
__int64 ans;
for(i=0;i<m;i++)
{
if(visi[i])
{
flag++; //记录用了多少个数
t=lcm(t,b[i]);
}
}
ans=n/t;
if(n%t==0) ans--;
if(flag&1) sum+=ans; //加奇减偶
else sum-=ans;
} int main()
{
int i,j,p;
while(~scanf("%d%d",&n,&m))
{
sum=0;
for(i=0;i<m;i++)
scanf("%d",&a[i]); int tt=0; //
for(i=0;i<m;i++)
{
if(a[i]) //去掉0
b[tt++]=a[i];
}
m=tt;
p=1<<m; //p表示选取多少个数,组合数的状态
for(i=1;i<p;i++)
{
int tmp=i;
for(j=0;j<m;j++)
{
visi[j]=tmp&1;
tmp>>=1;
}
cal();
}
printf("%I64d\n",sum);
}
return 0;
} /*
12 2
2 3
12 3
2 3 0
12 4
2 3 2 0
*/ //968MS


HDU 1796How many integers can you find(简单容斥定理)的更多相关文章

  1. HDU1796 How many integers can you find【容斥定理】

    题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1796 题目大意: 给你一个整数N.和M个整数的集合{A1.A2.-.Am}.集合内元素为非负数(包 ...

  2. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. 牛客练习赛43-F(简单容斥)

    题目链接:https://ac.nowcoder.com/acm/contest/548/F 题意:简化题意之后就是求[1,n]中不能被[2,m]中的数整除的数的个数. 思路:简单容斥题,求[1,n] ...

  4. hdu 4135 [a,b]中n互质数个数+容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=4135 给定一个数n,求某个区间[a,b]内有多少数与这个数互质. 对于一个给定的区间,我们如果能够求出这个区间内 ...

  5. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. HDU 1695 GCD(容斥定理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  7. 题解报告:hdu 4135 Co-prime(容斥定理入门)

    Problem Description Given a number N, you are asked to count the number of integers between A and B ...

  8. HDU 2841 Visible Trees(容斥定理)

    Visible Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  9. luogu P6583 回首过去 简单数论变换 简单容斥

    LINK:回首过去 考试的时候没推出来 原因:状态真的很差 以及 数论方面的 我甚至连除数分块都给忘了. 手玩几个数据 可以发现 \(\frac{x}{y}\)满足题目中的条件当且仅当 这个是一个既约 ...

随机推荐

  1. LA 4127 - The Sky is the Limit (离散化 扫描线 几何模板)

    题目链接 非原创 原创地址:http://blog.csdn.net/jingqi814/article/details/26117241 题意:输入n座山的信息(山的横坐标,高度,山底宽度),计算他 ...

  2. UVa 557 (概率 递推) Burger

    题意: 有两种汉堡给2n个孩子吃,每个孩子在吃之前要抛硬币决定吃哪一种汉堡.如果只剩一种汉堡,就不用抛硬币了. 求最后两个孩子吃到同一种汉堡的概率. 分析: 可以从反面思考,求最后两个孩子吃到不同汉堡 ...

  3. UVa 1262 (第k字典序) Password

    题意: 给出两个6行5列的字母矩阵,一个密码满足:密码的第i个字母在两个字母矩阵的第i列均出现. 然后找出字典序为k的密码,如果不存在输出NO 分析: 我们先统计分别在每一列均在两个矩阵出现的字母,然 ...

  4. codeforces 334A - Candy Bags

    忘了是偶数了,在纸上画奇数画了半天... #include<cstdio> #include<cstring> #include<cstdlib> #include ...

  5. 如何让Vim显示dos下的^M符号

    /*********************************************************************** * 如何让Vim显示dos下的^M符号 * 声明: * ...

  6. Java [Leetcode 66]Plus One

    题目描述: Given a non-negative number represented as an array of digits, plus one to the number. The dig ...

  7. plsql developer 使用技巧

    plsql developer 使用技巧 Oracle数据库相信已成为很多企业构建自身关键业务的重要后台支撑,也是众多开发人员常常采用的后台.但Oracle自己提供的一套客户端工具不是很好用,极大的影 ...

  8. Spring学习之基本概念

    Spring 基本概念 Spring优点: 1.Spring不同于其它的Framework,它要提供的是一种管理你的业务对象的方法. 2.DI有效的降低了耦合度 3.AOP提供了通用任务的集中管理 4 ...

  9. Android启动activity的4种模式(standard、singleTop、singleTask、singleINstance)

    在AndroidManifest.xml中配置activity时,android:launchMode属性会指定启动activity的模式,有四种: standard singleTop single ...

  10. U1 - A 留在电脑里的字体

    U1系列新篇章,实战派!说说常用的字体! U1系列新篇章,实战派!更多干货更多关于软件的使用等即将放出,大家敬请期待!!