How many integers can you find

Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3315    Accepted Submission(s): 937

Problem Description
  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
 
Input
  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
 
Output
  For each case, output the number.
 
Sample Input
12 2
2 3
 
Sample Output
7
 
Author
wangye
 
Source
 


题目大意:很简单的题目,直接看意思就懂哈!


      解题思路:容斥定理,加奇减偶,开始忘记求lcm了,囧!!而且开始还特判0的情况,题目中说的必须是除以,所以0不是一个解。。。开始竟然以为需要是因子就可以了。想通了之后直接先筛选一次,把0都筛选出去。

      题目地址:How many integers can you find

AC代码:
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<cstdio>
using namespace std;
__int64 sum;
int n,m;
int a[25];
int b[25];
int visi[25]; __int64 gcd(__int64 m,__int64 n)
{
__int64 tmp;
while(n)
{
tmp=m%n;
m=n;
n=tmp;
}
return m;
} __int64 lcm(__int64 m,__int64 n)
{
return m/gcd(m,n)*n;
} void cal()
{
int flag=0,i;
__int64 t=1;
__int64 ans;
for(i=0;i<m;i++)
{
if(visi[i])
{
flag++; //记录用了多少个数
t=lcm(t,b[i]);
}
}
ans=n/t;
if(n%t==0) ans--;
if(flag&1) sum+=ans; //加奇减偶
else sum-=ans;
} int main()
{
int i,j,p;
while(~scanf("%d%d",&n,&m))
{
sum=0;
for(i=0;i<m;i++)
scanf("%d",&a[i]); int tt=0; //
for(i=0;i<m;i++)
{
if(a[i]) //去掉0
b[tt++]=a[i];
}
m=tt;
p=1<<m; //p表示选取多少个数,组合数的状态
for(i=1;i<p;i++)
{
int tmp=i;
for(j=0;j<m;j++)
{
visi[j]=tmp&1;
tmp>>=1;
}
cal();
}
printf("%I64d\n",sum);
}
return 0;
} /*
12 2
2 3
12 3
2 3 0
12 4
2 3 2 0
*/ //968MS


HDU 1796How many integers can you find(简单容斥定理)的更多相关文章

  1. HDU1796 How many integers can you find【容斥定理】

    题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1796 题目大意: 给你一个整数N.和M个整数的集合{A1.A2.-.Am}.集合内元素为非负数(包 ...

  2. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. 牛客练习赛43-F(简单容斥)

    题目链接:https://ac.nowcoder.com/acm/contest/548/F 题意:简化题意之后就是求[1,n]中不能被[2,m]中的数整除的数的个数. 思路:简单容斥题,求[1,n] ...

  4. hdu 4135 [a,b]中n互质数个数+容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=4135 给定一个数n,求某个区间[a,b]内有多少数与这个数互质. 对于一个给定的区间,我们如果能够求出这个区间内 ...

  5. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. HDU 1695 GCD(容斥定理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  7. 题解报告:hdu 4135 Co-prime(容斥定理入门)

    Problem Description Given a number N, you are asked to count the number of integers between A and B ...

  8. HDU 2841 Visible Trees(容斥定理)

    Visible Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  9. luogu P6583 回首过去 简单数论变换 简单容斥

    LINK:回首过去 考试的时候没推出来 原因:状态真的很差 以及 数论方面的 我甚至连除数分块都给忘了. 手玩几个数据 可以发现 \(\frac{x}{y}\)满足题目中的条件当且仅当 这个是一个既约 ...

随机推荐

  1. android中给TextView或者Button的文字添加阴影效果

    1在代码中添加文字阴影 TextView 有一个方法 /**      * Gives the text a shadow of the specified radius and color, the ...

  2. bzoj2792

    首先想到二分答案是吧,设为lim 这道题难在判定,我们先不管将一个数变为0的条件 先使序列满足相邻差<=lim,这个正着扫一遍反着扫一遍即可 然后我们就要处理将一个数变为0的修改代价 当i变为0 ...

  3. LA 2402 (枚举) Fishnet

    题意: 正方形四个边界上分别有n个点,将其划分为(n+1)2个四边形,求四边形面积的最大值. 分析: 因为n的规模很小,所以可以二重循环枚举求最大值. 求直线(a, 0) (b, 0) 和直线(0, ...

  4. Java [Leetcode 337]House Robber III

    题目描述: The thief has found himself a new place for his thievery again. There is only one entrance to ...

  5. Java [Leetcode 119]Pascal's Triangle II

    题目描述: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return ...

  6. 苹果iphone4s完美越狱后破解4g网络方法

    苹果iphone4s完美越狱后破解4g网络方法教程 作者:佚名 字体:[增加 减小] 来源:互联网 时间:01-15 10:07:25我要评论 自从港版iPhone5s/c能够破解移动4G网络后, i ...

  7. Java—Map.Entry

    Map是java中的接口,Map.Entry是Map的一个内部接口. Map提供了一些常用方法,如keySet().entrySet()等方法. keySet()方法返回值是Map中key值的集合:e ...

  8. Android中利用画图类和线程画出闪烁的心形

                                                        本文讲解主要涉及的知识点: 1.线程控制 2.画图类 3.心形函数 大家先看图片: <ig ...

  9. redis配置实例及redis.conf详细说明

    一.配置实例 1.redis修改持久化路径.日志路径.清缓存 redis修改持久化路径和日志路径 vim  redis.conf logfile /data/redis_cache/logs/redi ...

  10. FTP文件上传与下载

    实现FTP文件上传与下载可以通过以下两种种方式实现(不知道还有没有其他方式),分别为:1.通过JDK自带的API实现:2.通过Apache提供的API是实现. 第一种方式:使用jdk中的ftpClie ...