题目:

Numbers can be regarded as product of its factors. For example,

8 = 2 x 2 x 2;
= 2 x 4.

Write a function that takes an integer n and return all possible combinations of its factors.

Note:

  1. Each combination's factors must be sorted ascending, for example: The factors of 2 and 6 is [2, 6], not [6, 2].
  2. You may assume that n is always positive.
  3. Factors should be greater than 1 and less than n.

Examples: 
input: 1
output:

[]

input: 37
output:

[]

input: 12
output:

[
[2, 6],
[2, 2, 3],
[3, 4]
]

input: 32
output:

[
[2, 16],
[2, 2, 8],
[2, 2, 2, 4],
[2, 2, 2, 2, 2],
[2, 4, 4],
[4, 8]
]

链接: http://leetcode.com/problems/factor-combinations/

题解:

求一个数的所有factor,这里我们又想到了DFS + Backtracking, 需要注意的是,factor都是>= 2的,并且在此题里,这个数本身不能算作factor,所以我们有了当n <= 1时的判断 if(list.size() > 1) add the result to res.

Time Complexity - O(2n), Space Complexity - O(n).

public class Solution {
public List<List<Integer>> getFactors(int n) {
List<List<Integer>> res = new ArrayList<>();
List<Integer> list = new ArrayList<>();
getFactors(res, list, n, 2);
return res;
} private void getFactors(List<List<Integer>> res, List<Integer> list, int n, int factor) {
if(n <= 1) {
if(list.size() > 1)
res.add(new ArrayList<Integer>(list));
return;
} for(int i = factor; i <= n; i++) {
if(n % i == 0) {
list.add(i);
getFactors(res, list, n / i, i);
list.remove(list.size() - 1);
}
}
}
}

二刷:

还是使用了一刷的办法,dfs + backtracking。但递归结束的条件更新成了n == 1。 但是速度并不是很快,原因是没有做剪枝。我们其实可以设置一个upper limit,即当i > Math.sqrt(n)的时候,我们不能继续进行下一轮递归,此时就要跳出了。

Java:

public class Solution {
public List<List<Integer>> getFactors(int n) {
List<List<Integer>> res = new ArrayList<>();
if (n <= 1) return res;
getFactors(res, new ArrayList<>(), n, 2);
return res;
} private void getFactors(List<List<Integer>> res, List<Integer> list, int n, int pos) {
if (n == 1) {
if (list.size() > 1) res.add(new ArrayList<>(list));
return;
}
for (int i = pos; i <= n; i++) {
if (n % i == 0) {
list.add(i);
getFactors(res, list, n / i, i);
list.remove(list.size() - 1);
}
}
}
}

Update: 使用@yuhangjiang的方法,只用计算 2到sqrt(n)的这么多因子,大大提高了速度。

public class Solution {
public List<List<Integer>> getFactors(int n) {
List<List<Integer>> res = new ArrayList<>();
if (n <= 1) return res;
getFactors(res, new ArrayList<>(), n, 2);
return res;
} private void getFactors(List<List<Integer>> res, List<Integer> list, int n, int pos) {
for (int i = pos; i <= Math.sqrt(n); i++) {
if (n % i == 0 && n / i >= i) {
list.add(i);
list.add(n / i);
res.add(new ArrayList<>(list));
list.remove(list.size() - 1);
getFactors(res, list, n / i, i);
list.remove(list.size() - 1);
}
}
}
}

Reference:

https://leetcode.com/discuss/51261/iterative-and-recursive-python

https://leetcode.com/discuss/87926/java-2ms-easy-to-understand-short-and-sweet

https://leetcode.com/discuss/58828/a-simple-java-solution

https://leetcode.com/discuss/72224/my-short-java-solution-which-is-easy-to-understand

https://leetcode.com/discuss/82087/share-bit-the-thought-process-short-java-bottom-and-top-down

254. Factor Combinations的更多相关文章

  1. Leetcode 254. Factor Combinations

    Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...

  2. 254. Factor Combinations 返回所有因数组合

    [抄题]: Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write ...

  3. [leetcode]254. Factor Combinations因式组合

    Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...

  4. [LeetCode] 254. Factor Combinations 因子组合

    Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...

  5. Factor Combinations

    Factor Combinations Problem: Numbers can be regarded as product of its factors. For example, 8 = 2 x ...

  6. [LeetCode] Factor Combinations 因子组合

    Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...

  7. LeetCode Factor Combinations

    原题链接在这里:https://leetcode.com/problems/factor-combinations/ 题目: Numbers can be regarded as product of ...

  8. [Locked] Factor combinations

    Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...

  9. [Swift]LeetCode254.因子组合 $ Factor Combinations

    Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...

随机推荐

  1. Sigma.js

    http://www.cnblogs.com/kingboy2008/p/6117741.html

  2. C#中窗体的互相访问

    1.在父窗体中构造子窗体对象时,将父窗体传递过去: 如:FrmSub frm=new FrmSub(this);//this代表父窗体 2.将父窗体中要访问的变量和方法修改为public 3.在子窗体 ...

  3. 利用Jmeter做接口测试

    本文作者:大道测试团队-孙云 1.在安装jmeter之前先配置好JDK,再配置jmeter环境变量. 2.启动jmeter 启动jmeter: 双击Jmeter解压路径(apache-jmeter-3 ...

  4. 【转】微软MVP攻略 (如何成为MVP?一个SQL Server MVP的经验之谈)

    一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 初衷 什么是微软MVP? 成为微软MVP的条件? 如何成为微软MVP? (一) 申请时间划分 (二) 前期准备 (三) ...

  5. Oracle定义两个变量,并对两个变量的值的长度进行判断

    这个例子其实很简单,但是往往简单的东西如果不用心就会漏洞百出,简单的一个逻辑判断,是为了给复杂逻辑判断做出铺垫 语法格式: if<condition_expression> then pl ...

  6. 关于Oracle表空间数据文件自增长的一些默认选项

    昨天,一个同事请教了一些关于Oracle表空间数据文件自增长的问题,解答过程中顺便整理起来,以后其他同事有同样的疑问时可以直接查阅. 实验内容: 创建MYTEST表空间,默认不开启自增长. 给MYTE ...

  7. 【Ibatis】总结各种使用技巧

    [Ibatis]总结各种使用技巧 <alias> <typeAlias alias="YintaiMobile_FreeData_Model" type=&quo ...

  8. 理解PHP 依赖注入|Laravel IoC容器

    看Laravel的IoC容器文档只是介绍实例,但是没有说原理,之前用MVC框架都没有在意这个概念,无意中在phalcon的文档中看到这个详细的介绍,感觉豁然开朗,复制粘贴过来,主要是好久没有写东西了, ...

  9. sqlserver oracle 时间加减

    sqlserver: 减去10小时: dateadd(hour,-10,Your_date) oracle : 减去10小时: sysdate()-10/24

  10. JS中的className含义

    问题描述:     JS中的className含义 问题解决:     className说明:         className属性可以设置和返回元素的class属性 可以有两种方法来获取对象的c ...