Semi-prime H-numbers
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7059   Accepted: 3030

Description

This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21
85
789
0

Sample Output

21 0
85 5
789 62

Source

 
 
仿照素数的埃氏筛选法即可
 
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream> using namespace std; #define maxn 1000005 bool H[maxn];
int ans[maxn],ele[maxn];
int len = ; void init() { for(int i = ; i <= maxn - ; i++) {
H[i] = (i % == );
} for(int i = ; i * i <= maxn - ; i += ) {
if(!H[i]) continue;
for(int j = i; j * i <= maxn - ; j++) {
H[j * i] = ;
}
} for(int i = ; i <= maxn - ; i += ) {
if(H[i]) {
ele[len++] = i;
}
} for(int i = ; i < len && ele[i] * ele[i] <= maxn - ; i++) {
for(int j = i; j < len && ele[j] * ele[i] <= maxn - ; j++) {
if(ele[i] * ele[j] % == )
ans[ ele[i] * ele[j] ] = ;
}
} for(int i = ; i <= maxn - ; i++) {
ans[i] += ans[i - ];
}
} int main() {
// freopen("sw.in","r",stdin); init(); int x;
while(~scanf("%d",&x) && x) {
printf("%d %d\n",x,ans[x]);
} return ; }

POJ 3292的更多相关文章

  1. 【POJ 3292】 Semi-prime H-numbers

    [POJ 3292] Semi-prime H-numbers 打个表 题意是1 5 9 13...这样的4的n次方+1定义为H-numbers H-numbers中仅仅由1*自己这一种方式组成 即没 ...

  2. POJ 3292 Semi-prime H-numbers

    类似素数筛... Semi-prime H-numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6873 Accept ...

  3. Mathematics:Semi-prime H-numbers(POJ 3292)

      Semi-prime H-numbers 题目大意,令4n+1的数叫H数,H数素数x的定义是只能被x=1*h(h是H数),其他都叫合数,特别的,当一个数只能被两个H素数乘积得到时,叫H-semi数 ...

  4. POJ 3292 Semi-prime H-numbers (素数筛法变形)

    题意:题目比较容易混淆,要搞清楚一点,这里面所有的定义都是在4×k+1(k>=0)这个封闭的集合而言的,不要跟我们常用的自然数集混淆. 题目要求我们计算 H-semi-primes, H-sem ...

  5. Semi-prime H-numbers POJ - 3292 打表(算复杂度)

    题意:参考https://blog.csdn.net/lyy289065406/article/details/6648537 一个H-number是所有的模四余一的数. 如果一个H-number是H ...

  6. poj 3292 H-素数问题 扩展艾氏筛选法

    题意:形似4n+1的被称作H-素数,两个H-素数相乘得到H-合成数.求h范围内的H-合成数个数 思路: h-素数                                            ...

  7. 筛选法 || POJ 3292 Semi-prime H-numbers

    5,9,13,……叫H-prime 一个数能且仅能由两个H-prime相乘得到,则为H-semi-prime 问1-n中的H-semi-prime有多少个 *解法:vis初始化为0代表H-prime, ...

  8. POJ 3292:Semi-prime H-numbers 筛选数

    Semi-prime H-numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8216   Accepted: 3 ...

  9. Day7 - I - Semi-prime H-numbers POJ - 3292

    This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study th ...

随机推荐

  1. Java并发编程概要

    线程开的越多,则性能越好吗? 未必,影响多线程性能的因素有:上下文切换,竞争/死锁,资源限制等.对于这些因素要均衡考量,才能获得较好的性能. 并发控制/线程间的通信方式 基本的并发控制原语有 vola ...

  2. 同一个tomcat多个web应用共享session

    tomcat版本:apache-tomcat-6.0.29(次方tomcat6和tomcat7支持)   1.修改D:\apache-tomcat-6.0.29\conf\server.xml文件   ...

  3. 济南学习 Day1 T3 am

    凝视[问题描述]背包是个好东西,希望我也有.给你一个二维的背包,它的体积是N*M.现在你有一些大小为1× 2和1×3的物品,每个物品有自己的价值.你希望往背包里面装一些物品,使得它们的价值和最大,问最 ...

  4. Qt学习总结-ui篇

    控件设置透明度: QGraphicsOpacityEffect *effect = new QGraphicsOpacityEffect(this); effect->setOpacity(0. ...

  5. centos下安装图像化界面

    前面我们安装的centos系统多为没有图像化界面的命令行界面,为了安装oracle等工具,我们先为我们的centos安装图像化界面 使用命令为 yum groupinstall "Deskt ...

  6. mysql主从复制-linux版本

    来自:http://www.osyunwei.com/archives/7269.html,改版 mysql主从复制本文采用的是centos6.5+mysql-5.6.23版本之前在 windows7 ...

  7. winform Config文件操作

    using System;using System.Collections.Generic;using System.Text;using System.Xml;using System.Config ...

  8. Delphi XE5教程7:单元引用和uses 子句

    内容源自Delphi XE5 UPDATE 2官方帮助<Delphi Reference>,本人水平有限,欢迎各位高人修正相关错误! 也欢迎各位加入到Delphi学习资料汉化中来,有兴趣者 ...

  9. c#使用easyhook库进行API钩取

    目标:使calc程序输入的数自动加1 (当别人使用时,总会得不到正确的结果,哈哈) 编写注入程序 ————————————————————————————————— class Program中的方法 ...

  10. TIME_WAIT引起Cannot assign requested address报错

    1.  问题描述 有时候用redis客户端(php或者java客户端)连接Redis服务器,报错:"Cannot assign requested address." 原因是客户端 ...