摘要

 

按照某种遍历方式对二叉树进行遍历,可以把二叉树中所有结点排序为一个线性序列。在该序列中,除第一个结点外每个结点有且仅有一个直接前驱结点;除最后一个结点外每一个结点有且仅有一个直接后继结点。这些指向直接前驱结点和指向直接后续结点的指针被称为线索(Thread),加了线索的二叉树称为线索二叉树

编辑本段概念

n个结点的二叉链表中含有n+1(2n-(n-1)=n+1)个空指针域。利用二叉链表中的空指针域,存放指向结点在某种遍历次序下的前趋和后继结点的指针(这种附加的指针称为"线索")。
这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种。
注意:
线索链表解决了无法直接找到该结点在某种遍历序列中的前趋和后继结点的问题,出现了二叉链表找左、右孩子困难的问题。

编辑本段线索二叉树结构

二叉树的遍历本质上是将一个复杂的非线性结构转换为线性结构,使每个结点都有了唯一前驱和后继(第一个结点无前驱,最后一个结点无后继)。对于二叉树的一个结点,查找其左右子女是方便的,其前驱后继只有在遍历中得到。为了容易找到前驱和后继,有两种方法。一是在结点结构中增加向前和向后的指针fwd和bkd,这种方法增加了存储开销,不可取;二是利用二叉树的空链指针。现将二叉树的结点结构重新定义如下:
lchild
ltag
data
rtag
rchild
其中:ltag=0 时lchild指向左子女;
ltag=1 时lchild指向前驱;
rtag=0 时rchild指向右子女;
rtag=1 时rchild指向后继;

编辑本段构建

建立线索二叉树,或者说对二叉树线索化,实质上就是遍历一颗二叉树。在遍历过程中,访问结点的操作是检查当前的左,右指针域是否为空,将它们改为指向前驱结点或后续结点的线索。为实现这一过程,设指针pre始终指向刚刚访问的结点,即若指针p指向当前结点,则pre指向它的前驱,以便设线索。
另外,在对一颗二叉树加线索时,必须首先申请一个头结点,建立头结点与二叉树的根结点的指向关系,对二叉树线索化后,还需建立最后一个结点与头结点之间的线索。
下面是建立中序二叉树的递归算法,其中pre为全局变量。
BiThrNodeType *pre;
BiThrTree InOrderThr(BiThrTree T)
{ /*中序遍历二叉树T,并将其中序线索化,pre为全局变量*/
BiThrTree head;
head=(BitThrNodeType *)mallocsizeof(BiThrType));/*设申请头结点成功*/
head->ltag=0;head->rtag=1;/*建立头结点*/
head->rchild=head;/*右指针回指*/
if(!T)head->lchild=head;/*若二叉树为空,则左指针回指*/
else{head->lchild=T;pre=head;
InThreading(T);/*中序遍历进行中序线索化*/
pre->rchild=head;
pre->rtag=1;/*最后一个结点线索化*/
head->rchild=pre;
};
return head;
}
void InThreading(BiThrTree p)
{/*通过中序遍历进行中序线索化*/
if(p)
{InThreading(p->lchild);/*左子树线索化*/
if(p->lchild==NULL)/*前驱线索*/
{p->ltag=1;
p->lchild=pre;
}
else p->ltag=0;
if(p->rchild==NULL)p->rtag=1;/*后驱线索*/
else p->rtag = 0;
if(pre!=NULL && pre->rtag==1) pre->rchild=p;
pre=p;
InThreading(p->rchild);/*右子树线索化*/
}
}

编辑本段算法

进行中序线索化的算法

bithptr*pre; /* 全程变量*/
voidINTHREAD(bithptr *p)
{if(p!=NULL)
{ INTHREAD(p->lchild); /* 左子树线索化*/
if(p->lchild==NULL) {p->ltag=1;p->lchild=pre;}
if(p->rchild==NULL) p->rtag=1;
if(pre!=NULL && pre->rtag==1)pre->rchild=p;
pre=p; /* 前驱指向当前结点*/
INTHREAD(p->rchild); /* 右子树线索化*/
}

线索二叉树查找前驱和后继

(1)中序线索二叉树:若结点的ltag=1,lchild指向其前驱;否则,该结点的前驱是以该结点为根的左子树上按中序遍历的最后一个结点。若rtag=1,rchild指向其后继;否则,该结点的后驱是以该结点为根的右子树上按中序遍历的第一个结点。
求后继的算法如下:
bithptr *INORDERNEXT(bithptr *p)
{if (p->rtag==1)return(p->rchild);
else {q=p->rchild; /* 找右子树最先访问的结点*/
while (q->ltag==0) q=q->lchild;
return(q);
}
}
求前驱的算法如下:
bithptr *INORDERNEXT(bithptr *p)
{if (p->ltag==1)return(p->lchild);
else {q=p->lchild;/* 找左子树最后访问的结点*/
while (q->rtag==0) q=q->rchild;
return(q);
}
}
(2) 后序线索二叉树:
在后序线索二叉树中查找结点*p的前驱:若结点*p无左子树,则p->lchild指向其前驱;否则,若结点*p有左子树,当其右子树为空时,其左子树的根(即p->lrchild)为其后序前驱。当其右子树非空时,其右子树的根(即p->rchild)为其后序前驱。
在后序线索二叉树中查找结点*p的后继:若结点*p为根,则无后继;若结点*p为其双亲的右孩子,则其后继为其双亲;若结点*p为其双亲的左孩子,且双亲无右子女,则其后继为其双亲;若结点*p为其双亲的左孩子,且双亲有右子女,则结点*p的后继是其双亲的右子树中按后序遍历的第一个结点。所以,求后序线索二叉树中结点的后继要知道其双亲的信息,要使用栈,所以说后序线索二叉树是不完
(3)先序线索二叉树:
在先序线索二叉树中查找结点的后继较容易,而查找前驱要知道其双亲的信息,要使用栈,所以说先序线索二叉树也是不完善的。

线索二叉树Threaded binary tree的更多相关文章

  1. 遍历二叉树 traversing binary tree 线索二叉树 threaded binary tree 线索链表 线索化

    遍历二叉树   traversing binary tree 线索二叉树 threaded binary tree 线索链表 线索化 1. 二叉树3个基本单元组成:根节点.左子树.右子树 以L.D.R ...

  2. 数据结构《9》----Threaded Binary Tree 线索二叉树

    对于任意一棵节点数为 n 的二叉树,NULL 指针的数目为  n+1 , 线索树就是利用这些 "浪费" 了的指针的数据结构. Definition: "A binary ...

  3. 笔试算法题(41):线索二叉树(Threaded Binary Tree)

    议题:线索二叉树(Threaded Binary Tree) 分析: 为除第一个节点外的每个节点添加一个指向其前驱节点的指针,为除最后一个节点外的每个节点添加一个指向其后续节点的指针,通过这些额外的指 ...

  4. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  5. 数据结构-二叉树(Binary Tree)

    1.二叉树(Binary Tree) 是n(n>=0)个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根节点和两棵互不相交的,分别称为根节点的左子树和右子树的二叉树组成.  2.特数二 ...

  6. [Swift]LeetCode105. 从前序与中序遍历序列构造二叉树 | Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  7. [Swift]LeetCode106. 从中序与后序遍历序列构造二叉树 | Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  8. [Swift]LeetCode226. 翻转二叉树 | Invert Binary Tree

    Invert a binary tree. Example: Input: 4 / \ 2 7 / \ / \ 1 3 6 9 Output: 4 / \ 7 2 / \ / \ 9 6 3 1 Tr ...

  9. [Swift]LeetCode654. 最大二叉树 | Maximum Binary Tree

    Given an integer array with no duplicates. A maximum tree building on this array is defined as follo ...

随机推荐

  1. jQuery之锚点带动画跳转特效

    背景图片为金木研,这是我最爱的一张图. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" &quo ...

  2. 【转】MySQL的安装与配置

    一.MySQL的安装 1.在线安装: 命令:sudo apt-get install mysql-server 在安装的过程中将提示为“root”用户设置密码,输入自己的密码即可,安装按成后已自动配置 ...

  3. (转)软件版本中的Alpha,Beta,RC,Trial是什么意思?

    版本号:V(Version):即版本,通常用数字表示版本号.(如:EVEREST Ultimate v4.20.1188 Beta )Build:用数字或日期标示版本号的一种方式.(如:VeryCD ...

  4. int组成时间值

    int startYear = int.Parse(DateTime.Now.Year.ToString()); int startMouth = int.Parse(DateTime.Now.Mon ...

  5. Contest1065 - 第四届“图灵杯”NEUQ-ACM程序设计竞赛(个人赛)D拿糖果

    题目描述 薯片和他的朋友薯条来到了商店,商店有n个糖果,标号依次为1,2,3....n,对应的价值为W1,W2,W3...Wn.现在薯片先拿走一个标号为a的糖果,标号小于a的糖果就被商家收回去了,然后 ...

  6. IOCP模型总结(转)

    IOCP模型总结(转) IOCP(I/O Completion Port,I/O完成端口)是性能最好的一种I/O模型.它是应用程序使用线程池处理异步I/O请求的一种机制.在处理多个并发的异步I/O请求 ...

  7. 阿里云 centos 环境配置与 django 部署

    1. 免密码登陆 # 本机生成密钥, 并将 pub 复制到阿里云服务器上 $ ssh-keygen -t rsa -P '' # -P表示密码,-P '' 就表示空密码 $ scp ~/.ssh/FI ...

  8. 如何管好.net的内存(托管堆和垃圾回收)

    一:C#标准Dispose模式的实现 需要明确一下C#程序(或者说.NET)中的资源.简单的说来,C#中的每一个类型都代表一种资源,而资源又分为两类: 托管资源:由CLR管理分配和释放的资源,即由CL ...

  9. php cURL library is not loaded

    问题: php 在命令行里面可以找到 curl 模块,但是用apache 没有找到 curl 模块. 表现内容为: extension_loaded('curl')cURL library is no ...

  10. 深入理解jsavascript的作用域

    一. JavaScript声明提前 在JavaScript中如果不创建变量,直接去使用,则报错: console.log(xxoo); // 报错:Uncaught ReferenceError: x ...