摘要

 

按照某种遍历方式对二叉树进行遍历,可以把二叉树中所有结点排序为一个线性序列。在该序列中,除第一个结点外每个结点有且仅有一个直接前驱结点;除最后一个结点外每一个结点有且仅有一个直接后继结点。这些指向直接前驱结点和指向直接后续结点的指针被称为线索(Thread),加了线索的二叉树称为线索二叉树

编辑本段概念

n个结点的二叉链表中含有n+1(2n-(n-1)=n+1)个空指针域。利用二叉链表中的空指针域,存放指向结点在某种遍历次序下的前趋和后继结点的指针(这种附加的指针称为"线索")。
这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种。
注意:
线索链表解决了无法直接找到该结点在某种遍历序列中的前趋和后继结点的问题,出现了二叉链表找左、右孩子困难的问题。

编辑本段线索二叉树结构

二叉树的遍历本质上是将一个复杂的非线性结构转换为线性结构,使每个结点都有了唯一前驱和后继(第一个结点无前驱,最后一个结点无后继)。对于二叉树的一个结点,查找其左右子女是方便的,其前驱后继只有在遍历中得到。为了容易找到前驱和后继,有两种方法。一是在结点结构中增加向前和向后的指针fwd和bkd,这种方法增加了存储开销,不可取;二是利用二叉树的空链指针。现将二叉树的结点结构重新定义如下:
lchild
ltag
data
rtag
rchild
其中:ltag=0 时lchild指向左子女;
ltag=1 时lchild指向前驱;
rtag=0 时rchild指向右子女;
rtag=1 时rchild指向后继;

编辑本段构建

建立线索二叉树,或者说对二叉树线索化,实质上就是遍历一颗二叉树。在遍历过程中,访问结点的操作是检查当前的左,右指针域是否为空,将它们改为指向前驱结点或后续结点的线索。为实现这一过程,设指针pre始终指向刚刚访问的结点,即若指针p指向当前结点,则pre指向它的前驱,以便设线索。
另外,在对一颗二叉树加线索时,必须首先申请一个头结点,建立头结点与二叉树的根结点的指向关系,对二叉树线索化后,还需建立最后一个结点与头结点之间的线索。
下面是建立中序二叉树的递归算法,其中pre为全局变量。
BiThrNodeType *pre;
BiThrTree InOrderThr(BiThrTree T)
{ /*中序遍历二叉树T,并将其中序线索化,pre为全局变量*/
BiThrTree head;
head=(BitThrNodeType *)mallocsizeof(BiThrType));/*设申请头结点成功*/
head->ltag=0;head->rtag=1;/*建立头结点*/
head->rchild=head;/*右指针回指*/
if(!T)head->lchild=head;/*若二叉树为空,则左指针回指*/
else{head->lchild=T;pre=head;
InThreading(T);/*中序遍历进行中序线索化*/
pre->rchild=head;
pre->rtag=1;/*最后一个结点线索化*/
head->rchild=pre;
};
return head;
}
void InThreading(BiThrTree p)
{/*通过中序遍历进行中序线索化*/
if(p)
{InThreading(p->lchild);/*左子树线索化*/
if(p->lchild==NULL)/*前驱线索*/
{p->ltag=1;
p->lchild=pre;
}
else p->ltag=0;
if(p->rchild==NULL)p->rtag=1;/*后驱线索*/
else p->rtag = 0;
if(pre!=NULL && pre->rtag==1) pre->rchild=p;
pre=p;
InThreading(p->rchild);/*右子树线索化*/
}
}

编辑本段算法

进行中序线索化的算法

bithptr*pre; /* 全程变量*/
voidINTHREAD(bithptr *p)
{if(p!=NULL)
{ INTHREAD(p->lchild); /* 左子树线索化*/
if(p->lchild==NULL) {p->ltag=1;p->lchild=pre;}
if(p->rchild==NULL) p->rtag=1;
if(pre!=NULL && pre->rtag==1)pre->rchild=p;
pre=p; /* 前驱指向当前结点*/
INTHREAD(p->rchild); /* 右子树线索化*/
}

线索二叉树查找前驱和后继

(1)中序线索二叉树:若结点的ltag=1,lchild指向其前驱;否则,该结点的前驱是以该结点为根的左子树上按中序遍历的最后一个结点。若rtag=1,rchild指向其后继;否则,该结点的后驱是以该结点为根的右子树上按中序遍历的第一个结点。
求后继的算法如下:
bithptr *INORDERNEXT(bithptr *p)
{if (p->rtag==1)return(p->rchild);
else {q=p->rchild; /* 找右子树最先访问的结点*/
while (q->ltag==0) q=q->lchild;
return(q);
}
}
求前驱的算法如下:
bithptr *INORDERNEXT(bithptr *p)
{if (p->ltag==1)return(p->lchild);
else {q=p->lchild;/* 找左子树最后访问的结点*/
while (q->rtag==0) q=q->rchild;
return(q);
}
}
(2) 后序线索二叉树:
在后序线索二叉树中查找结点*p的前驱:若结点*p无左子树,则p->lchild指向其前驱;否则,若结点*p有左子树,当其右子树为空时,其左子树的根(即p->lrchild)为其后序前驱。当其右子树非空时,其右子树的根(即p->rchild)为其后序前驱。
在后序线索二叉树中查找结点*p的后继:若结点*p为根,则无后继;若结点*p为其双亲的右孩子,则其后继为其双亲;若结点*p为其双亲的左孩子,且双亲无右子女,则其后继为其双亲;若结点*p为其双亲的左孩子,且双亲有右子女,则结点*p的后继是其双亲的右子树中按后序遍历的第一个结点。所以,求后序线索二叉树中结点的后继要知道其双亲的信息,要使用栈,所以说后序线索二叉树是不完
(3)先序线索二叉树:
在先序线索二叉树中查找结点的后继较容易,而查找前驱要知道其双亲的信息,要使用栈,所以说先序线索二叉树也是不完善的。

线索二叉树Threaded binary tree的更多相关文章

  1. 遍历二叉树 traversing binary tree 线索二叉树 threaded binary tree 线索链表 线索化

    遍历二叉树   traversing binary tree 线索二叉树 threaded binary tree 线索链表 线索化 1. 二叉树3个基本单元组成:根节点.左子树.右子树 以L.D.R ...

  2. 数据结构《9》----Threaded Binary Tree 线索二叉树

    对于任意一棵节点数为 n 的二叉树,NULL 指针的数目为  n+1 , 线索树就是利用这些 "浪费" 了的指针的数据结构. Definition: "A binary ...

  3. 笔试算法题(41):线索二叉树(Threaded Binary Tree)

    议题:线索二叉树(Threaded Binary Tree) 分析: 为除第一个节点外的每个节点添加一个指向其前驱节点的指针,为除最后一个节点外的每个节点添加一个指向其后续节点的指针,通过这些额外的指 ...

  4. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  5. 数据结构-二叉树(Binary Tree)

    1.二叉树(Binary Tree) 是n(n>=0)个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根节点和两棵互不相交的,分别称为根节点的左子树和右子树的二叉树组成.  2.特数二 ...

  6. [Swift]LeetCode105. 从前序与中序遍历序列构造二叉树 | Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  7. [Swift]LeetCode106. 从中序与后序遍历序列构造二叉树 | Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  8. [Swift]LeetCode226. 翻转二叉树 | Invert Binary Tree

    Invert a binary tree. Example: Input: 4 / \ 2 7 / \ / \ 1 3 6 9 Output: 4 / \ 7 2 / \ / \ 9 6 3 1 Tr ...

  9. [Swift]LeetCode654. 最大二叉树 | Maximum Binary Tree

    Given an integer array with no duplicates. A maximum tree building on this array is defined as follo ...

随机推荐

  1. ios Swift 特性

    特性提供了关于声明和类型的更多信息.在Swift中有两类特性,用于修饰声明的以及用于修饰类型的.例如,required特性,当应用于一个类的指定或便利初始化器声明时,表明它的每个子类都必须实现那个初始 ...

  2. jqGrid API 全

    JQGrid是一个在jquery基础上做的一个表格控件,以ajax的方式和服务器端通信. JQGrid Demo 是一个在线的演示项目.在这里,可以知道jqgrid可以做什么事情. 下面是转自其他人b ...

  3. Unity编程回忆录之控制物体移动

    最新心血来潮,然后开始学习Unity3D游戏开发引擎,对于一个主流的跨平台3D游戏开发引擎,我已经深深的为他着迷了,于是果断的开始学习这个引擎,而且刚刚预装的游戏引擎最新版中4.3版本已经开始原生支持 ...

  4. 如何建立一个“绑定友好的”usercontrol--wpf

    如何建立一个"绑定友好的"usercontrol--wpf 这几天在打算将以前用winform写的工具程序重构到wpf,顺便学习理解看过的wpf的知识. 因为程序设计到一个Exce ...

  5. 【原】web页面登陆验证

    using Itcast.Mall.Model; using System; using System.Collections.Generic; using System.Linq; using Sy ...

  6. [OpenXml] Read/Write row/cell from excel

    public static void test(){ using (SpreadsheetDocument document = SpreadsheetDocument.Open("test ...

  7. dapper.rainbow

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.D ...

  8. CCNP第三天 EIGRP综合实验

    实验题如图所示:其中R2连R3 R5为快速以太网线,其他均为串线,帧中继默认是富曼斯(全连网状结构),即所有接入的路由之间的PVC都已经打通,所有  要关闭R5和R8的逆向arp功能,来手工配置R5到 ...

  9. Catalyst揭秘 Day7 SQL转为RDD的具体实现

    Catalyst揭秘 Day7 SQL转为RDD的具体实现 从技术角度,越底层和硬件偶尔越高,可动弹的空间越小,而越高层,可动用的智慧是更多.Catalyst就是个高层的智慧. Catalyst已经逐 ...

  10. java 中的equal和"=="

    先看一段代码 String str1 = new String("str"); String str2 = new String("str"); System. ...