/*
 * To change this template, choose Tools | Templates
 * and open the template in the editor.
 */
package snailocr.util;

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;

/**
 *
 * @author Administrator
 */
public class ImageTool {

private BufferedImage image;
    private int width;
    private int height;

/**
     * 变图像为黑白色 提示: 黑白化之前最好灰色化以便得到好的灰度平均值,利于获得好的黑白效果
     *
     * @return
     */
    public ImageTool changeToBlackWhiteImage() {
        int avgGrayValue = getAvgValue();
        int whitePoint = getWhitePoint(), blackPoint = getBlackPoint();

Color point;
        for (int i = 0; i < height; i++) {
            for (int j = 0; j < width; j++) {
                point = new Color(image.getRGB(j, i));
                image.setRGB(j, i, (point.getRed() < avgGrayValue ? blackPoint : whitePoint));
            }
        }
        return this;
    }

/**
     *
     *
     * @param whiteAreaPercent 过滤之后白色区域面积占整个图片面积的最小百分比
     * @param removeLighter true:过滤比中值颜色轻的,false:过滤比中值颜色重的,一般都是true
     * @return
     */
    public ImageTool midddleValueFilter(int whiteAreaMinPercent, boolean removeLighter) {
        int modify = 0;
        int avg = getAvgValue();
        Color point;
        while (getWhitePercent() < whiteAreaMinPercent) {
            for (int i = 0; i < height; i++) {
                for (int j = 0; j < width; j++) {
                    point = new Color(image.getRGB(j, i));
                    if (removeLighter) {
                        if (((point.getRed() + point.getGreen() + point.getBlue()) / 3) > avg - modify) {
//                         System.out.println(((point.getRed() + point.getGreen() + point.getBlue()) / 3)+"--"+(avg - modify));
                            image.setRGB(j, i, getWhitePoint());
                        }
                    } else {
                        if (((point.getRed() + point.getGreen() + point.getBlue()) / 3) < avg + modify) {
//                         System.out.println(((point.getRed() + point.getGreen() + point.getBlue()) / 3)+"--"+(avg - modify));
                            image.setRGB(j, i, getWhitePoint());
                        }
                    }

}
            }
            modify++;
        }
//        System.out.println(getWhitePercent());
        return this;
    }

private int getWhitePercent() {
        Color point;
        int white = 0;
        for (int i = 0; i < height; i++) {
            for (int j = 0; j < width; j++) {
                point = new Color(image.getRGB(j, i));
                if (((point.getRed() + point.getGreen() + point.getBlue()) / 3) == 255) {
                    white++;
                }
            }
        }
        return (int) Math.ceil(((float) white * 100 / (width * height)));
    }

/**
     * @param 变图像为灰色 取像素点的rgb三色平均值作为灰度值
     *
     * @return
     */
    public ImageTool changeToGrayImage() {
        int gray;
        Color point;
        for (int i = 0; i < height; i++) {
            for (int j = 0; j < width; j++) {
                point = new Color(image.getRGB(j, i));
                gray = (point.getRed() + point.getGreen() + point.getBlue()) / 3;
                image.setRGB(j, i, new Color(gray, gray, gray).getRGB());
            }
        }
        return this;
    }

/**
     *
     * 去除噪点和单点组成的干扰线 注意: 去除噪点之前应该对图像黑白化
     *
     * @param neighborhoodMinCount 每个点最少的邻居数
     * @return
     */
    public ImageTool removeBadBlock(int blockWidth, int blockHeight, int neighborhoodMinCount) {
        int val;
        int whitePoint = getWhitePoint();
        int counter, topLeftXIndex, topLeftYIndex;
        for (int y = 0; y < height; y++) {
            for (int x = 0; x < width; x++) {
                //初始化邻居数为0
                counter = 0;
                topLeftXIndex = x - 1;
                topLeftYIndex = y - 1;
                //x1 y1是以x,y左上角点为顶点的矩形,该矩形包围在传入的矩形的外围,计算传入的矩形的有效邻居数目
                if (isBlackBlock(x, y, blockWidth, blockHeight)) {//只有当块是全黑色才计算
                    for (int x1 = topLeftXIndex; x1 <= topLeftXIndex + blockWidth + 1; x1++) {
                        for (int y1 = topLeftYIndex; y1 <= topLeftYIndex + blockHeight + 1; y1++) {
                            //判断这个点是否存在
                            if (x1 < width && x1 >= 0 && y1 < height && y1 >= 0) {
                                //判断这个点是否是传入矩形的外围点
                                if (x1 == topLeftXIndex || x1 == topLeftXIndex + blockWidth + 1
                                        || y1 == topLeftYIndex || y1 == topLeftYIndex + blockHeight + 1) {
                                    //这里假定图像已经被黑白化,取Red值认为不是0就是255
                                    val = new Color(image.getRGB(x1, y1)).getRed();
//                                System.out.println(val + "--" + (centerVal));
                                    //如果这个邻居是黑色,就把中心点的有效邻居数目加一
                                    if (val == 0) {
                                        counter++;
                                    }
                                }
                            }
                        }
                    }
//                    System.out.println("-------------------");
//                System.out.println(x+"-"+y+"-"+counter);
                    if (counter < neighborhoodMinCount) {
                        image.setRGB(x, y, whitePoint);
                    }
                }
            }
        }
        return this;
    }

/**
     * 如果点周围的黑点数达到补偿值就把这个点变为黑色
     *
     * @param addFlag 补偿阀值,通过观察处理过的图像确定,一般为2即可
     * @return
     */
    public ImageTool modifyBlank(int addFlag) {
        int val, counter = 0, topLeftXIndex, topLeftYIndex, blackPoint = getBlackPoint();
        Color point;
        for (int y = 0; y < height; y++) {
            for (int x = 0; x < width; x++) {
                //初始化邻居数为0
                counter = 0;
                topLeftXIndex = x - 1;
                topLeftYIndex = y - 1;
                point = new Color(image.getRGB(x, y));
                //这里假定图像已经被黑白化,取Red值认为不是0就是255
                val = point.getRed();
                //只有白点才进行补偿
                if (val == 255) {
                    for (int x1 = topLeftXIndex; x1 <= topLeftXIndex + 2; x1++) {
                        for (int y1 = topLeftYIndex; y1 <= topLeftYIndex + 2; y1++) {
                            //判断这个点是否存在
                            if (x1 < width && x1 >= 0 && y1 < height && y1 >= 0) {
                                //判断这个点是否是传入点的外围点
                                if (x1 == topLeftXIndex || x1 == topLeftXIndex + 2
                                        || y1 == topLeftYIndex || y1 == topLeftYIndex + 2) {
                                    //这里假定图像已经被黑白化,取Red值认为不是0就是255
                                    val = new Color(image.getRGB(x1, y1)).getRed();
//                                System.out.println(val + "--" + (centerVal));
                                    //如果这个邻居是黑色,就把中心点的补偿数目加一
                                    if (val == 0) {
                                        counter++;
                                    }
                                }
                            }
                        }
                    }
                    //如果这个点周围的黑点数达到补偿值就把这个点变为黑色
                    if (counter >= addFlag) {
                        image.setRGB(x, y, blackPoint);
                    }
                }
            }
        }
        return this;
    }

public BufferedImage getBufferedImage(String filename) {
        File file = new File(filename);
        try {
            return ImageIO.read(file);
        } catch (IOException ex) {
            Logger.getLogger(ImageTool.class.getName()).log(Level.SEVERE, null, ex);
            return null;
        }
    }

private boolean isBlackBlock(int startX, int startY, int blockWidth, int blockHeight) {
        int counter = 0;//统计黑色像素点的个数
        int total = 0;//统计有效像素点的个数
        int val;
        for (int x1 = startX; x1 <= startX + blockWidth - 1; x1++) {
            for (int y1 = startY; y1 <= startY + blockHeight - 1; y1++) {
                //判断这个点是否存在
                if (x1 < width && x1 >= 0 && y1 < height && y1 >= 0) {
                    total++;//有效像素点的个数
                    //这里假定图像已经被黑白化,取Red值认为不是0就是255
                    val = new Color(image.getRGB(x1, y1)).getRed();
                    //如果这个点是黑色,就把黑色像素点的数目加一
                    if (val == 0) {
                        counter++;
                    }
                }
            }
        }
//        System.out.println(startX + "--" + startY + "" + (counter == total&&total!=0));
        return counter == total && total != 0;
    }

private int getWhitePoint() {
        return (new Color(255, 255, 255).getRGB() & 0xffffffff);
    }

private int getBlackPoint() {
        return (new Color(0, 0, 0).getRGB() & 0xffffffff);
    }

private int getAvgValue() {
        Color point;
        int total = 0;
        for (int i = 0; i < height; i++) {
            for (int j = 0; j < width; j++) {
                point = new Color(image.getRGB(j, i));
                total += (point.getRed() + point.getGreen() + point.getBlue()) / 3;
            }
        }
        return total / (width * height);
    }

public void saveToFile(String filePath) {
        try {
            String ext = filePath.substring(filePath.lastIndexOf(".") + 1);
            File newFile = new File(filePath);
            ImageIO.write(image, ext, newFile);
        } catch (IOException ex) {
            Logger.getLogger(ImageTool.class.getName()).log(Level.SEVERE, null, ex);
        }
    }

public BufferedImage getImage() {
        return image;
    }

public void setImage(BufferedImage image) {
        this.image = image;
        width = image.getWidth();
        height = image.getHeight();
    }
}

java 验证码图片处理类,为验证码识别做准备的更多相关文章

  1. c# 验证码图片生成类

    using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Drawing2D ...

  2. ThinkPHP---TP功能类之验证码

    [一]验证码 验证码全称:captcha(全自动识别机器与人类的图灵测试),简单理解就是区分当前操作是人执行的还是机器执行的 常见验证码分3种:页面上图片形式.短信验证码(邮箱验证可以归类到短信验证码 ...

  3. Java中SSM+Shiro系统登录验证码的实现方法

    1.验证码生成类: import java.util.Random; import java.awt.image.BufferedImage; import java.awt.Graphics; im ...

  4. .Net中验证码图片生成

    开发网站或平台系统,登录页面是必不可少的功能,但是现在很多人可以使用工具暴力破解网站密码,为了防止这类非法操作,需要在登录页面添加验证,验证码就是最常用的一种验证方式. 我结合了自己的经验和网上的验证 ...

  5. Winform中产生验证码图片

    1.创建ValidCode类: public class ValidCode { #region Private Fields private const double PI = 3.14159265 ...

  6. 验证码在后台的编写,并实现点击验证码图片时时发生更新 C# 项目发布到IIS后不能用log4net写日志

    验证码在后台的编写,并实现点击验证码图片时时发生更新   验证码在软件中的地位越来越重要,有效防止这种问题对某一个特定注册用户用特定程序暴力破解方式进行不断的登陆尝试:下面就是实现验证码的基本步骤: ...

  7. asp.net验证码图片生成示例

    验证码,一个很常见的东西.不管你是使用者还是开发者,这个东西80%的人都见到过,但是之前有人给我说过这么一句话“内行看门道,外行看热闹!”,仔细琢磨一下还真的是那么一回事.对于怎么实现验证码,闲话不多 ...

  8. 验证码图片生成工具类——Captcha.java

    验证码图片生成工具,使用JAVA生成的图片验证码,调用getRandcode方法获取图片验证码,以流的方式传输到前端页面. 源码如下:(点击下载  Captcha.java) import java. ...

  9. java生成图片验证码(转)--封装生成图片验证码的工具类

    博客部分内容转载自 LonlySnow的博客:后台java 实现验证码生成 1.controller方法 @RequestMapping(value = "/verifycode/img&q ...

随机推荐

  1. Oracle 热备份batch脚本 Windows

    1.最初来源于网络. 2.根据环境和喜好自己修改. 3.实测是可以完成备份任务的. 4.不推荐用于实际环境. bak.bat:执行时执行此脚本,其他脚本是调用和生成或者生成之后再调用.(需要自己修改先 ...

  2. Python 读取excel

    一.到python官网下载http://pypi.python.org/pypi/xlrd模块安装, sudo python setup.py install 二.使用介绍 1.导入模块 import ...

  3. js数组依据下标删除元素

    最近在项目中遇到了一些问题,基础性的东西记得不牢固,就总结一下放在这里备再次查找,对操作js数组的一些问题一些常用的记录! 1.创建数组 var array = new Array(); var ar ...

  4. [转]eoe社区cocos2d-x游戏引擎知识大汇总

    [eoeAndroid 社区]特意为大家汇总了cocos2d-x知识贴,分量十足,纯正干或.从基础教程到游戏应用的开发,我们不让知识流失,我们要做知识的搬运工还有加工 师.希望大家能够一起的学习,和大 ...

  5. MyEclipse10导入工程jsp报错问题

    好多时候,再用myecplise进行项目开发的时候,遇到导入工程的时候,工程内的jsp页面好多都报错.这是什么原因造成的呢?​ 我对于我遇到的问题及解决方法,跟大家分享一下.​ 我的Jsp页面报错的原 ...

  6. 上传控件swfupload的使用笔记

    1.下载下来的官方domo里不同的例子里会引入各自的JS,注意区分.可以直接拿官方例子来改成自己想要的例子. 2.注意PHP配置文件里也有最大上传文件限制,如果文件太大会上传不成功. 3.如果有问题可 ...

  7. NServiceBus教程-持久化

    NServiceBus的各种特性需要持久性.其中有超时.传奇和订阅存储. 四个持久化技术在NServiceBus在使用: RavenDB nHibernate 内存中 MSMQ 读到安装Raven D ...

  8. Apache Spark 架构

    1.Driver:运行 Application 的 main() 函数并且创建 SparkContext. 2.Client:用户提交作业的客户端. 3.Worker:集群中任何可以运行 Applic ...

  9. 数据结构(C语言版)---第三章栈和队列 3.4.2 队列的链式表示和实现(循环队列)

    这个是循环队列的实现,至于串及数组这两章,等有空再看,下面将学习树. 源码如下: #include <stdio.h> #include <stdlib.h> #define ...

  10. leetcode:Path Sum (路径之和) 【面试算法题】

    题目: Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up ...