hdu1565 网络流或状态压缩DP
对于网络流有一个定理:
最小点权覆盖集=最大网络流;
最大点权独立集=总权值-最小点权覆盖集;
网络流解法代码如下:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define N 1010
#define M 50010
#define inf 1<<30
using namespace std;
struct Edge{
int to,val,next;
}edge[M];
int index[N],d[N],gap[N],e;
void addedge(int from,int to,int val)
{
edge[e].to=to;
edge[e].val=val;
edge[e].next=index[from];
index[from]=e++;
edge[e].to=from;
edge[e].val=;
edge[e].next=index[to];
index[to]=e++;
}
int source,des,n,m;
//n is the number of point
int dfs(int pos,int flow)
{
if(pos==des)
return flow;
int i,j,v,val,lv,mind,c;
mind=n-;//初始最小标号为n-1
lv=flow;
for(i=index[pos];i!=-;i=edge[i].next)
{
v=edge[i].to;
val=edge[i].val;
if(val)
{
if(d[v]+==d[pos])
{
c=min(lv,val);//对于该点的最小可行流
c=dfs(v,c);
edge[i].val-=c;//更新剩余图
edge[i^].val+=c;
lv-=c;
if(d[source]>=n)return flow-lv;
if(lv==) break;
}
if(d[v]<mind)mind=d[v];//找出与pos相连的点的最小标号
}
}
if(lv==flow)//没有找到增广路劲,进行标号更新
{
--gap[d[pos]];
if(!gap[d[pos]])
d[source]=n;
d[pos]=mind+;
++gap[d[pos]];
}
return flow-lv;
}
int sap(int st,int de)
{
source=st;
des=de;
memset(d,,sizeof(d));
memset(gap,,sizeof(gap));
gap[]=n;//初始标号为0的有n个.
int ans=;
while(d[st]<n)
{
ans+=dfs(st,inf);
//cout<<d[st]<<endl;
}
return ans;
}
void init()
{
e=;
memset(index,-,sizeof(index));
}
int pos(int a,int b)
{
return (a-)*m+b;
}
int main()
{
int t,i,j;
while(scanf("%d",&m)!=EOF)
{ init();
int w;
int sum=;
for(i=;i<=m;i++)
for(j=;j<=m;j++)
{
scanf("%d",&w);
sum+=w;
if((i+j)%==)
{
addedge(,pos(i,j),w);
if(i<m)
addedge(pos(i,j),pos(i+,j),inf);
if(j<m)
addedge(pos(i,j),pos(i,j+),inf);
if(i>)
addedge(pos(i,j),pos(i-,j),inf);
if(j>)
addedge(pos(i,j),pos(i,j-),inf);
}
else
addedge(pos(i,j),m*m+,w);
}
n=m*m+;
printf("%d\n",sum-sap(,n-));
}
return ;
}
状态压缩解法:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int s[<<];
int map[][];
int dp[][<<];
int main()
{
int n,i,j,t,k,num=;;
n=<<;
for(i=;i<=n;i++)//记录可行状态
if((i&(i<<))==)
s[num++]=i;
while(scanf("%d",&n)!=EOF)
{
for(i=;i<n;i++)
for(j=;j<n;j++)
scanf("%d",&map[i][j]);
int p=;
memset(dp,,sizeof(dp));
for(i=;i<n;i++)//枚举每一行
{
p^=;//进行滚动数组
for(j=;j<num;j++)//枚举每行的所有状态
{
if(s[j]>(<<n))
break;
int sum=;
for(k=;k<n;k++) if(s[j]&(<<k)) sum+=map[i][k];//记录该状态值
for(k=;k<num;k++)//枚举已经得到的状态转移到该状态能到的最大值
{
if(s[k]>(<<n))
break;
if(!(s[k]&s[j]))
dp[p][s[j]]=max(dp[p][s[j]],dp[-p][s[k]]+sum);
}
}
}
int ans=;
for(i=;i<num&&s[i]<=(<<n);i++)//寻找答案
ans=max(ans,dp[p][s[i]]);
printf("%d\n",ans);
}
return ;
}
hdu1565 网络流或状态压缩DP的更多相关文章
- HDU1565 方格取数(1)(状态压缩dp)
题目链接. 分析: 说这题是状态压缩dp,其实不是,怎么说呢,题目数据太水了,所以就过了.手动输入n=20的情况,超时.正解是网络流,不太会. A这题时有个细节错了,是dp[i][j]还是dp[i][ ...
- HDU1565+状态压缩dp
简单的压缩状态 dp /* 状态压缩dp 同hdu2167 利用滚动数组!! */ #include<stdio.h> #include<string.h> #include& ...
- 状态压缩dp poj 3254 hdu5045
近来感觉状态压缩dp的强大性(灵活利用了二进制运算非常关键). . . 于是做了俩提来看看..毕竟队友是专业的dp.我仅仅是管中窥豹下而已.. 日后有机会再与之玩耍玩耍...ps:假设上天再给我一次机 ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
随机推荐
- vim MiniBufExplorer 插件
MiniBufExplorer安装好久了,但一直没怎么使用过. 今天查了下资料,作为一个备份. 当你只编辑一个buffer的时候MiniBufExplorer派不上用场, 当 你打开第二个buffer ...
- ecstore b2b2c 商城页面伪静态代码 及相关注意事项
一下代码需要添加到 nginx.conf配置文件的server块,阿里云虚拟机一般在conf文件夹下建立vhost文件夹,把server块放进去,然后 在nginx.conf使用include 包含进 ...
- LCD1602汉字、自定义字符取模
用zimo221软件, 新建一个8*8的图像,留出左边3列,用右边5列点出自定义字符,选择取模方式C51,就可得到对应的编码 如下图:温度符号℃的编码
- 汇总:Linux下svn命令大全
svn(subversion)是近年来崛起的版本管理工具,svn服务器有2种运行方式:独立服务器和借助apache.2种方式各有利弊.不管是那种方式,都需要使用各种命令来实现.在本文中,haohtml ...
- jQuery基础学习7——层次选择器find()方法
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- VB.NET开发中遇到的一点小问题
在用vb.net开发的security support时,遇到一个问题,在trainingCourses.aspx页面上增加了一个HyperLink控件 <asp:HyperLink runat ...
- 修改mysql字符编码出现Job failed to start解决办法
从网上找到如下资料: $sudo gedit /etc/mysql/my.cnf [client]下添加: default-character-set=utf8 [mysqld]下添加: de ...
- delete数组引发的core分析
delete [] ptr 引发了singnal 6 abort的core错误,跟踪过程发现写入ptr大量数据,引发内存越界,破坏了new数组的尾部数据保护,导致delete的时候core. 问题分析 ...
- hibernate AOP
摘自:http://pandonix.iteye.com/blog/336873/ 此前对于AOP的使用仅限于声明式事务,除此之外在实际开发中也没有遇到过与之相关的问题.最近项目中遇到了以下几点需求, ...
- ADO.NET 快速入门(十五):ADO 应用转换为 ADO.NET
这是一个已经移植到 .NET 的 ADO 应用的例子.也演示了单向.只读.快速 DataReader 的使用.它演示如何使用 DataView 类从 DataSet 获取一个 Table 和 操作一个 ...