题目传送门

  传送点I

  传送点II

  传送点III

题目大意

  给定$n$的平面上的直线,保证没有三条直线共点,两条直线平行。问随机选出3条直线交成的三角形面积的期望。

  显然$S=\frac{1}{2}ah$是不可用的。(压根感觉不可优化)

  考虑向量的做法:$S = \frac{1}{2}(A \times B + B \times C + C\times A)$。(相当于把一个三角形拆成了三个以原点作为其中一个顶点的"有向"三角形)

  于是考虑利用向量叉积对向量加法的分配律进行优化。

  枚举第一条直线,剩下的直线按照极角序加入,不断计算交点和有向面积。

  对于直线的方向,我是根据原点在直线的哪一侧决定的。(比如定向后,原点在它左侧)

  然后画三条直线相交,讨论原点在哪,然后再讨论怎么计算有向面积。

  画一张图仅供参考,1和2表示是交点被计算的顺序。

  开心地发现原点在三角形内部的时候计算叉积的时候需要取相反数计入答案。

  这很烦。所以取一个超级远的地方的点作为原点就可以成功避开了这个问题。

Code

 /**
* Codeforces
* Problem#528E
* Accepted
* Time: 78ms
* Memory: 100k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; //Comparison of floating point constants
const double eps = 1e-;
//π
const double pi = acos((double)-); //Define the points and the vectors
typedef class Point {
public:
double x;
double y;
Point(const double x = 0.0, const double y = 0.0):x(x), y(y) { }
}Point, Vector; const Point O(1e7, 1e7); Vector operator + (Vector a, Vector b) {
return Vector(a.x + b.x, a.y + b.y);
} Vector operator - (Vector a, Vector b) {
return Vector(a.x - b.x, a.y - b.y);
} Vector operator * (Vector a, double b) {
return Vector(a.x * b, a.y * b);
} Vector operator * (double b, Vector a) {
return Vector(a.x * b, a.y * b);
} Vector operator / (Vector a, double b) {
return Vector(a.x / b, a.y / b);
} Vector operator - (Vector a) {
return Vector(-a.x, -a.y);
} int dcmp(double x) {
if(fabs(x) < eps) return ;
return (x < ) ? (-) : ();
} double Dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
} double Cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
} double Area(Point a, Point b, Point c) {
return fabs(Cross(b - a, c - a) / );
} Point getLineIntersection(Point A, Vector v, Point B, Vector u) {
Vector w = B - A;
double t = (Cross(w, u) / Cross(v, u));
return A + t * v;
} typedef class Line {
public:
Point p;
Vector v;
double ang;
int id; Line() { }
Line(int a, int b, int c, int id):id(id) {
if (!b) {
p = Point(c * 1.0 / a, );
v = Point(, );
} else {
p = Point(, c * 1.0 / b);
v = Point(-b, a);
}
if (Cross(O - p, v) > )
v = -v;
ang = atan2(v.y, v.x);
} boolean operator < (Line b) const {
return ang < b.ang;
}
}Line; ostream& operator << (ostream& os, Point p) {
os << "(" << p.x << " " << p.y << ")";
return os;
} int n;
Line *ls; inline void init() {
scanf("%d", &n);
ls = new Line[(n + )];
for (int i = , a, b, c; i <= n; i++) {
scanf("%d%d%d", &a, &b, &c);
ls[i] = Line(a, b, c, i);
}
} double res = 0.0;
inline void solve() {
sort(ls + , ls + n + );
// for (int i = 1; i <= n; i++)
// cerr << ls[i].p << " " << ls[i].v << " " << ls[i].ang << endl;
for (int i = ; i <= n; i++) {
Point sP(, ), P;
for (int j = i + ; j <= n; j++) {
P = getLineIntersection(ls[i].p, ls[i].v, ls[j].p, ls[j].v) - O;
// int d = dcmp(Cross(ls[i].v, ls[j].v));
res += Cross(sP, P);
sP = sP + P;
}
for (int j = ; j < i; j++) {
P = getLineIntersection(ls[i].p, ls[i].v, ls[j].p, ls[j].v) - O;
// int d = dcmp(Cross(ls[i].v, ls[j].v));
res += Cross(sP, P);
sP = sP + P;
}
}
printf("%.9lf", res * / n / (n - ) / (n - ));
} int main() {
init();
solve();
return ;
}

Codeforces 528E Triangles 3000 - 计算几何的更多相关文章

  1. 【CF528E】Triangles 3000(计算几何)

    [CF528E]Triangles 3000(计算几何) 题面 CF 平面上有若干条直线,保证不平行,不会三线共点. 求任选三条直线出来围出的三角形的面积的期望. 题解 如果一定考虑直接计算这个三角形 ...

  2. Codeforces 15E Triangles 【组合计数】

    Codeforces 15E Triangles Last summer Peter was at his granny's in the country, when a wolf attacked ...

  3. CodeForces 682E Alyona and Triangles (计算几何)

    Alyona and Triangles 题目连接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/J Description You ar ...

  4. Codeforces Round #296 (Div. 1) E. Triangles 3000

    http://codeforces.com/contest/528/problem/E 先来吐槽一下,一直没机会进div 1, 马力不如当年, 这场题目都不是非常难,div 2 四道题都是水题! 题目 ...

  5. Codeforces 15E Triangles - 组合数学

    Last summer Peter was at his granny's in the country, when a wolf attacked sheep in the nearby fores ...

  6. ACM学习历程——UVA10112 Myacm Triangles(计算几何,多边形与点的包含关系)

    Description   Problem B: Myacm Triangles Problem B: Myacm Triangles Source file: triangle.{c, cpp, j ...

  7. CF528E Triangles 3000

    cf luogu 既然要求三角形面积,不如考虑三角形的面积公式.因为是三条直线,所以可以考虑利用三个交点来算面积,如果这个三角形按照逆时针方向有\(ABC\)三点,那么他的面积为\(\frac{\ve ...

  8. Codeforces Gym 100733A Shitália 计算几何

    ShitáliaTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.acti ...

  9. Codeforces Gym 100286A. Aerodynamics 计算几何 求二维凸包面积

    Problem A. AerodynamicsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/co ...

随机推荐

  1. Timeline Storyteller 现已加入自定义图表库

    前言 下载地址: https://store.office.com/en-us/app.aspx?assetid=WA104381136&sourcecorrid=328f5e2b-e973- ...

  2. UnicodeEncodeError: 'latin-1' codec can't encode characters in position 41-50: ordinal not in range(256)

    在处理标题或网址为中文的文件或网页的时候,报UnicodeEncodeError: 'latin-1' codec can't encode characters in position 41-50: ...

  3. unable to create ...erroractionpreference....

    Docker on windows 10 can't startup after deleting MobyLinuxVM in Hyper-V manually 重新启动hyper-v就可以解决了

  4. 使用redis接管cookie

    class RedisCookie { // 默认配置名称(使用load_config加载) private $_default_config_path = 'package/cache/redis_ ...

  5. poj3087 Shuffle'm Up(模拟)

    Shuffle'm Up Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10766   Accepted: 4976 Des ...

  6. char 与 varchar 区别

    MySQL中的字符串有两个常用的类型:char和varchar,二者各有优势,下面我们来详细分析一下.  转载加补充 在建立数据库表结构的时候,为了给一个String类型的数据定义一个数据库的数据库类 ...

  7. Git 与 SVN 命令学习笔记

    一:Git git config --global user.name "you name"   #设置用户名git config --global user.email &quo ...

  8. 2.node.js (二)服务器登录注册 与 包的发布

    get: 不安全 小 2k 数据会在地址栏上显示 从服务器获取 快 post: 相对安全 https 大 1G 不会 向服务器发送 慢 get:直接解析url地址 借助 url模块 var urlOb ...

  9. vue3版本到vue2版本的桥接工具

    vue2的命令可以正常使用.

  10. PHP(css样式)

    布局页面的时候 大色块 小色块 ...(就是宽高) 内容布局:浮动,定位,显示,层级 浮动:float(样式名):值:left right设一个父标签,设定宽高,里面随便浮动!!!!!!!!!!!!! ...