Codeforces 528E Triangles 3000 - 计算几何
显然$S=\frac{1}{2}ah$是不可用的。(压根感觉不可优化)
考虑向量的做法:$S = \frac{1}{2}(A \times B + B \times C + C\times A)$。(相当于把一个三角形拆成了三个以原点作为其中一个顶点的"有向"三角形)
于是考虑利用向量叉积对向量加法的分配律进行优化。
枚举第一条直线,剩下的直线按照极角序加入,不断计算交点和有向面积。
对于直线的方向,我是根据原点在直线的哪一侧决定的。(比如定向后,原点在它左侧)
然后画三条直线相交,讨论原点在哪,然后再讨论怎么计算有向面积。

画一张图仅供参考,1和2表示是交点被计算的顺序。
开心地发现原点在三角形内部的时候计算叉积的时候需要取相反数计入答案。
这很烦。所以取一个超级远的地方的点作为原点就可以成功避开了这个问题。
Code
/**
* Codeforces
* Problem#528E
* Accepted
* Time: 78ms
* Memory: 100k
*/
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; //Comparison of floating point constants
const double eps = 1e-;
//π
const double pi = acos((double)-); //Define the points and the vectors
typedef class Point {
public:
double x;
double y;
Point(const double x = 0.0, const double y = 0.0):x(x), y(y) { }
}Point, Vector; const Point O(1e7, 1e7); Vector operator + (Vector a, Vector b) {
return Vector(a.x + b.x, a.y + b.y);
} Vector operator - (Vector a, Vector b) {
return Vector(a.x - b.x, a.y - b.y);
} Vector operator * (Vector a, double b) {
return Vector(a.x * b, a.y * b);
} Vector operator * (double b, Vector a) {
return Vector(a.x * b, a.y * b);
} Vector operator / (Vector a, double b) {
return Vector(a.x / b, a.y / b);
} Vector operator - (Vector a) {
return Vector(-a.x, -a.y);
} int dcmp(double x) {
if(fabs(x) < eps) return ;
return (x < ) ? (-) : ();
} double Dot(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
} double Cross(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
} double Area(Point a, Point b, Point c) {
return fabs(Cross(b - a, c - a) / );
} Point getLineIntersection(Point A, Vector v, Point B, Vector u) {
Vector w = B - A;
double t = (Cross(w, u) / Cross(v, u));
return A + t * v;
} typedef class Line {
public:
Point p;
Vector v;
double ang;
int id; Line() { }
Line(int a, int b, int c, int id):id(id) {
if (!b) {
p = Point(c * 1.0 / a, );
v = Point(, );
} else {
p = Point(, c * 1.0 / b);
v = Point(-b, a);
}
if (Cross(O - p, v) > )
v = -v;
ang = atan2(v.y, v.x);
} boolean operator < (Line b) const {
return ang < b.ang;
}
}Line; ostream& operator << (ostream& os, Point p) {
os << "(" << p.x << " " << p.y << ")";
return os;
} int n;
Line *ls; inline void init() {
scanf("%d", &n);
ls = new Line[(n + )];
for (int i = , a, b, c; i <= n; i++) {
scanf("%d%d%d", &a, &b, &c);
ls[i] = Line(a, b, c, i);
}
} double res = 0.0;
inline void solve() {
sort(ls + , ls + n + );
// for (int i = 1; i <= n; i++)
// cerr << ls[i].p << " " << ls[i].v << " " << ls[i].ang << endl;
for (int i = ; i <= n; i++) {
Point sP(, ), P;
for (int j = i + ; j <= n; j++) {
P = getLineIntersection(ls[i].p, ls[i].v, ls[j].p, ls[j].v) - O;
// int d = dcmp(Cross(ls[i].v, ls[j].v));
res += Cross(sP, P);
sP = sP + P;
}
for (int j = ; j < i; j++) {
P = getLineIntersection(ls[i].p, ls[i].v, ls[j].p, ls[j].v) - O;
// int d = dcmp(Cross(ls[i].v, ls[j].v));
res += Cross(sP, P);
sP = sP + P;
}
}
printf("%.9lf", res * / n / (n - ) / (n - ));
} int main() {
init();
solve();
return ;
}
Codeforces 528E Triangles 3000 - 计算几何的更多相关文章
- 【CF528E】Triangles 3000(计算几何)
[CF528E]Triangles 3000(计算几何) 题面 CF 平面上有若干条直线,保证不平行,不会三线共点. 求任选三条直线出来围出的三角形的面积的期望. 题解 如果一定考虑直接计算这个三角形 ...
- Codeforces 15E Triangles 【组合计数】
Codeforces 15E Triangles Last summer Peter was at his granny's in the country, when a wolf attacked ...
- CodeForces 682E Alyona and Triangles (计算几何)
Alyona and Triangles 题目连接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/J Description You ar ...
- Codeforces Round #296 (Div. 1) E. Triangles 3000
http://codeforces.com/contest/528/problem/E 先来吐槽一下,一直没机会进div 1, 马力不如当年, 这场题目都不是非常难,div 2 四道题都是水题! 题目 ...
- Codeforces 15E Triangles - 组合数学
Last summer Peter was at his granny's in the country, when a wolf attacked sheep in the nearby fores ...
- ACM学习历程——UVA10112 Myacm Triangles(计算几何,多边形与点的包含关系)
Description Problem B: Myacm Triangles Problem B: Myacm Triangles Source file: triangle.{c, cpp, j ...
- CF528E Triangles 3000
cf luogu 既然要求三角形面积,不如考虑三角形的面积公式.因为是三条直线,所以可以考虑利用三个交点来算面积,如果这个三角形按照逆时针方向有\(ABC\)三点,那么他的面积为\(\frac{\ve ...
- Codeforces Gym 100733A Shitália 计算几何
ShitáliaTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.acti ...
- Codeforces Gym 100286A. Aerodynamics 计算几何 求二维凸包面积
Problem A. AerodynamicsTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/co ...
随机推荐
- Date类型与字符串之间的转换
Java中Date类型与字符串转化 (一)Date与字符串的转化 Date.String.Timestamp之间的转换! public static void main(String[] ...
- Nginx打卡
Nginx打卡 此括号中的是干货 [ 直接说最关心的事:如何去掉访问路径的端口号? 答案:使用Nginx啊 具体安装还需看底下啰嗦的东东,安装OK且完美启动的同学,server proxy_pass ...
- ffmpeg快速获取视频截图
使用ffmpeg可以非常方便的生成视频截图,命令行下的mplayer也可以做视频截图,只不过mplayer在本质上还是调用ffmpeg来实现.ffmpeg 通过指定 -vcodec 参数为 mjpeg ...
- GCD与LCM
求最大公约数(GCD)和求最小公倍数(LCM): 首先是求最大公约数,我们可以利用辗转相除法来求 1 int gcd(int a,int b) 2 { 3 if(b==0) 4 return a; 5 ...
- vue 拍照上传图片 demo
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- redis数据库通过dump.rdb文件恢复数据库或者数据库迁移
环境:centos7.2软件:redis-3.2.10(yum安装) 情景一:公司之前的redis没有开启aof模式,一直是rdb模式,但是数据又非常重要,数据一点也不能丢失,所以需要开启aof,但是 ...
- Django1.11加载静态文件
Django版本1.11网站通常需要js,css,images等文件,在Django中,我们把这些文件称为“静态文件”(static files).Django提供django.contrib.sta ...
- InnoDB中锁的模式
Ⅰ.总览 S行级共享锁 lock in share mode X行级排它锁 增删改 IS意向共享锁 IX意向排他锁 AI自增锁 Ⅱ.锁之间的兼容性 兼 X IX S IS X × × × × IX × ...
- Oracle对于敏感数据的处理,可以采用策略(dbms_rls.add_policy)
Oracle Policy的简单说明: Policy应用于数据行访问权限控制时,其作用简而言之,就是在查询数据表时,自动在查询结果上加上一个Where子句.假如该查询已有where子句,则在该Wher ...
- Windows 10 更改系统文字大小
一. Win + R 进入Regedit: 二. 定位到下图的位置: 三. 选中一个项目,右键,选中修改二进制,打开后如下图: 四. 1.这里,0000一行中的第一位,对应了图形界面设置中的字体大小. ...