python为我们提供的标准模块concurrent.futures里面有ThreadPoolExecutor(线程池)和ProcessPoolExecutor(进程池)两个模块. 在这个模块里他们俩在用法上是一样的.

concurrent.futures官方文档: https://docs.python.org/dev/library/concurrent.futures.html

#1 介绍
concurrent.futures模块提供了高度封装的异步调用接口
ThreadPoolExecutor:线程池,提供异步调用
ProcessPoolExecutor: 进程池,提供异步调用
Both implement the same interface, which is defined
by the abstract Executor class. #2 基本方法
#submit(fn, *args, **kwargs)
异步提交任务 #map(func, *iterables, timeout=None, chunksize=1)
取代for循环submit的操作 #shutdown(wait=True)
相当于进程池的pool.close()+pool.join()操作
wait=True,等待池内所有任务执行完毕回收完资源后才继续
wait=False,立即返回,并不会等待池内的任务执行完毕
但不管wait参数为何值,整个程序都会等到所有任务执行完毕
submit和map必须在shutdown之前 #result(timeout=None)
取得结果 #add_done_callback(fn)
回调函数
#介绍
The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asynchronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global Interpreter Lock but also means that only picklable objects can be executed and returned. class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None)
An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If max_workers is None or not given, it will default to the number of processors on the machine. If max_workers is lower or equal to 0, then a ValueError will be raised. # 用法示例
from concurrent.futures import ThreadPoolExecutor
import time def func(n):
time.sleep(1)
print(">>>", n)
return n*n if __name__ == '__main__':
t_pool = ThreadPoolExecutor(max_workers=5) # 线程池中最多不要超过cup个数*5
t_list = []
for i in range(20):
res = t_pool.submit(func, i)
t_list.append(res)
t_pool.shutdown() # 等待子线程结束, 再执行父进程 相当于相当于进程池的pool.close()+pool.join()操作
for resl in t_list:
print(resl.result()) # 结果是有序的, 这是因为t_list中的元素就是
# 有序的,所以循环迭代从结果对象中取出的值也是有序的

ThreadPoolExecutor

#介绍
ThreadPoolExecutor is an Executor subclass that uses a pool of threads to execute calls asynchronously.
class concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix='')
An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously. Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O instead of CPU work and the number of workers should be higher than the number of workers for ProcessPoolExecutor. New in version 3.6: The thread_name_prefix argument was added to allow users to control the threading.Thread names for worker threads created by the pool for easier debugging. #用法
与ThreadPoolExecutor相同, 将ThreadPoolExecutor换成Process就可以了

ProcessPoolExecutor

from concurrent.futures import ThreadPoolExecutor
import time def func(n):
time.sleep(1)
print(">>>", n)
return n*n if __name__ == '__main__':
t_pool = ThreadPoolExecutor(max_workers=5)
res_g = t_pool.map(func,range(20))# 取代了for + submit 得到的结果是一个生成器对象
t_pool.shutdown()
print("主线程")
for ress in res_g:
print(ress)

map用法示例

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from multiprocessing import Pool
import requests
import json
import os def get_page(url):
print('<进程%s> get %s' %(os.getpid(),url))
respone=requests.get(url)
if respone.status_code == 200:
return {'url':url,'text':respone.text} def parse_page(res):
res=res.result()
print('<进程%s> parse %s' %(os.getpid(),res['url']))
parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text']))
with open('db.txt','a') as f:
f.write(parse_res) if __name__ == '__main__':
urls=[
'https://www.baidu.com',
'https://www.python.org',
'https://www.openstack.org',
'https://help.github.com/',
'http://www.sina.com.cn/'
] # p=Pool(3)
# for url in urls:
# p.apply_async(get_page,args=(url,),callback=pasrse_page)
# p.close()
# p.join() p=ProcessPoolExecutor(3)
for url in urls:
p.submit(get_page,url).add_done_callback(parse_page) #parse_page拿到的是一个future对象obj,需要用obj.result()拿到结果

回调函数

Python标准模块--concurrent.futures(进程池,线程池)的更多相关文章

  1. Python标准模块--concurrent.futures 进程池线程池终极用法

    concurrent.futures 这个模块是异步调用的机制concurrent.futures 提交任务都是用submitfor + submit 多个任务的提交shutdown 是等效于Pool ...

  2. Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures

    参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...

  3. python 全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当 ...

  4. python全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程 什么是线程? 线程是cpu调度的最小单位 进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的 ...

  5. Python标准模块--concurrent.futures

    1 模块简介 concurrent.futures模块是在Python3.2中添加的.根据Python的官方文档,concurrent.futures模块提供给开发者一个执行异步调用的高级接口.con ...

  6. Python--day41--线程池--python标准模块concurrent.futures

    1,线程池代码示例:(注:进程池的话只要将以下代码中的ThreadPoolExecutor替换成ProcessPoolExecutor即可,这里不演示) import time from concur ...

  7. concurrent.futures模块(进程池/线程池)

    需要注意一下不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 只要你用并发,就会有锁的问题,但是你不能一直去自己加 ...

  8. concurrent.futures模块(进程池&线程池)

    1.线程池的概念 由于python中的GIL导致每个进程一次只能运行一个线程,在I/O密集型的操作中可以开启多线程,但是在使用多线程处理任务时候,不是线程越多越好,因为在线程切换的时候,需要切换上下文 ...

  9. Python进阶----异步同步,阻塞非阻塞,线程池(进程池)的异步+回调机制实行并发, 线程队列(Queue, LifoQueue,PriorityQueue), 事件Event,线程的三个状态(就绪,挂起,运行) ,***协程概念,yield模拟并发(有缺陷),Greenlet模块(手动切换),Gevent(协程并发)

    Python进阶----异步同步,阻塞非阻塞,线程池(进程池)的异步+回调机制实行并发, 线程队列(Queue, LifoQueue,PriorityQueue), 事件Event,线程的三个状态(就 ...

随机推荐

  1. css3贝塞尔曲线

    http://yisibl.github.io/cubic-bezier/#.17,.67,.94,.53 前言 在了解 cubic-bezier 之前,你需要对 CSS3 中的动画效果有所认识,它是 ...

  2. C/C++预处理器

    关于预处理器 首先时预处理器的条件指令 什么是预处理指令? 预处理指令是以#号开头的代码行.#号必须是该行除了任何空白字符外的第一个字符.#后是指令关键字,在关键字和#号之间允许存在任意个数的空白字符 ...

  3. 下载频道--IT资源关东煮第二期[申明:来源于网络]

    下载频道–IT资源关东煮第二期[申明:来源于网络] 地址:http://geek.csdn.net/news/detail/129509?ref=myread

  4. Android启动页欢迎界面大全 (网址)

    地址:http://download.csdn.net/detail/u013424496/9539810

  5. 2018-2019-2 20165330《网络对抗技术》Exp5 MSF基础应用

    目录 基础问题 相关知识 实验目的 实验内容 实验步骤 离实战还缺些什么技术或步骤? 实验总结与体会 实验目的 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路 返回目 ...

  6. HTTP协议工作原理

    HTTP简介        超文本传输协议(HTTP:Hypertext Transport Protocol)是万维网应用层的协议,它通过两个程序实现:一个是客户端程序(各种浏览器),另一个是服务器 ...

  7. jupyter notebook安装/代码补全/支持golang 踩坑记

    安装(不要用root) 安装anaconda3,然后ln -s bin目录下的jupyter命令到/usr/bin目录下 生成密码备用 敲ipython进入交互终端 In [1]: from note ...

  8. ORACLE中关于使用between在MyBatis中取不同的区间值和取反

    最近在项目中使用between取不同的区间值问题,由于区间跨度大,而且区间多,又是前端传过来的参数,所以使用in和exists比较麻烦.然后就考虑使用between.现将使用方法记录一下. 假如表有个 ...

  9. Mac系统下 PHP7安装Swoole扩展 教程

    转载自 https://www.fujieace.com/php/php-extensions/swoole.html 今天我用的PHP版本是:PHP7.1 环境依赖: php-5.3.10 或更高版 ...

  10. 异常分类VS垃圾分类

    异常分类VS垃圾分类 容易快速判断出是什么业务异常,容易对不同的异常进行不同的处理,容易很快找到对应的解决方法