Description

有\(N(N\leq 200000)\)个数对\((a_i,b_i)(a_i,b_i,\leq 2000)\),求出\(\sum\limits_{i=1}^n\sum\limits_{j=i+1}^nC_{a_i+b_i+a_j+b_j}^{a_i+a_j}\) 答案对\(10^9+7\)取模

Solution

首先考虑\(C(n,m)\)的组合意义:在笛卡尔坐标系下只能向上和向右走,从原点走到\((m,n-m)\)的路径总数。

所以这个\(C_{a_i+b_i+a_j+b_j}^{a_i+a_j}\)就可以看成从\((0,0)\)走到\((a_i+a_j,b_i+b_j)\)的方案数,这个式子里有\(i\)的项和有\(j\)的项掺在了一起,尝试将他们拆开。这个方案数等价于从\((-a_i,-b_i)\)走到\((a_j,b_j)\)的方案数,这样一来\(i\)和\(j\)至少分开了。

然后试着不考虑\(j>i\)的限制,求出第三象限上所有点到\((a_i,b_i)\)的方案数,再减去从\((-a_i,-b_i)\)到\((a_i,b_i)\)的方案数,再除以\(2\)就是就是最终的答案了。

可以设\(f[i][j]\)表示第三象限内的点只能向上和向右走,走到\((i,j)\)的方案数。初值是\(f[a_i][b_i]=1\),转移就是每个点可以从它的左边或者右边走过来\(f[i][j]+=f[i-1][j]+f[i][j-1]\)。

Code

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cctype>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using std::min;
using std::max;
using std::swap;
using std::vector;
const int M=2005;
const int N=200005;
const int ZYZ=1e9+7;
typedef double db;
typedef long long ll;
#define pb(A) push_back(A)
#define pii std::pair<int,int>
#define all(A) A.begin(),A.end()
#define mp(A,B) std::make_pair(A,B) int n,a[N],b[N];
int f[M<<1][M<<1];
int fac[M<<2],ifac[M<<2]; int getint(){
int X=0,w=0;char ch=0;
while(!isdigit(ch))w|=ch=='-',ch=getchar();
while( isdigit(ch))X=X*10+ch-48,ch=getchar();
if(w) return -X;return X;
} int ksm(int a,int b,int ans=1){
while(b){
if(b&1) ans=1ll*ans*a%ZYZ;
a=1ll*a*a%ZYZ;b>>=1;
}return ans;
} void init(int n){
fac[0]=ifac[0]=1;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%ZYZ;
ifac[n]=ksm(fac[n],ZYZ-2);
for(int i=n-1;i;i--) ifac[i]=1ll*ifac[i+1]*(i+1)%ZYZ;
} int C(int n,int m){
return 1ll*fac[n]*ifac[m]%ZYZ*ifac[n-m]%ZYZ;
} signed main(){
init(8000);
n=getint();
for(int i=1;i<=n;i++){
a[i]=getint(),b[i]=getint();
f[2001-a[i]][2001-b[i]]++;
}
for(int i=1;i<=4001;i++)
for(int j=1;j<=4001;j++)
f[i][j]=(1ll*f[i][j]+f[i-1][j]+f[i][j-1])%ZYZ;
int ans=0;
for(int i=1;i<=n;i++) ans=(ans+f[a[i]+2001][b[i]+2001])%ZYZ;
for(int i=1;i<=n;i++) ans=(ans-C(a[i]+b[i]<<1,b[i]<<1)+ZYZ)%ZYZ;
printf("%lld\n",1ll*ans*ksm(2,ZYZ-2)%ZYZ);
return 0;
}

[AGC001 E] BBQ Hard的更多相关文章

  1. AGC001 E - BBQ Hard 组合数学

    题目链接 AGC001 E - BBQ Hard 题解 考虑\(C(n+m,n)\)的组合意义 从\((0,0)\)走到\((n,m)\)的方案数 从\((x,y)\)走到\((x+n,y+m)\)的 ...

  2. AGC001 E - BBQ Hard【dp+组合数学】

    首先直接按要求列出式子是\( \sum_{i=1}^{n}\sum_{j=i+1}^{n}C_{a_i+a_j+b_i+b_j}^{a_i+a_j} \) 这样显然过不了,因为ab的数据范围比较小,所 ...

  3. AGC001 E - BBQ Hard [组合数]

    这题就是要求 \(\sum_{i=1}^{n} \sum_{j=i+1}^{n} C(a_i+a_j+b_i+b_j,a_i+a_j)\) 考虑搞一搞,\(C(a_i+a_j+b_i+b_j,a_i+ ...

  4. 【AtCoder】AGC001

    AGC001 A - BBQ Easy 从第\(2n - 1\)个隔一个加一下加到1即可 #include <bits/stdc++.h> #define fi first #define ...

  5. A*G#C001

    AGC001 A BBQ Easy 贪心. https://agc001.contest.atcoder.jp/submissions/7856034 B Mysterious Light 很nb这个 ...

  6. 【AGC板刷记录】

    这个帖子,是在自己学知识点累了的时候就看看\(AGC\)的题目来休息. 而且白天上课可以做( AGC-001 \(A\ BBQ Easy\) 考虑从小到大排,相邻两个取为一对. BBQ Easy #i ...

  7. AGC001[BCDE] 题解

    A没意思 F太难 所以大概近期的AGC题解都是BCDE的 然后特殊情况再说 开始刷AGC的原因就是计数太差 没有脑子 好几个学长都推荐的AGC所以就开始刷了 = = 大概两天三篇的速度?[可能也就最开 ...

  8. AGC01 A - BBQ Easy

    目录 题目链接 题解 代码 题目链接 AGC01 A - BBQ Easy 题解 贪心 排序之后从大到小,没两组取小的那个 代码 #include<cstdio> #include< ...

  9. 【agc001e】BBQ HARD(动态规划)

    [agc001e]BBQ HARD(动态规划) 题面 atcoder 洛谷 题解 这些agc都是写的整场的题解,现在还是把其中一些题目单独拿出来发 这题可以说非常妙了. 我们可以把这个值看做在网格图上 ...

随机推荐

  1. ES6最新语法

    ECMAScript 6(以下简称ES6)是JavaScript语言的下一代标准.因为当前版本的ES6是在2015年发布的,所以又称ECMAScript 2015. 也就是说,ES6就是ES2015. ...

  2. 第一个VS2015 Xaramin Android项目(续)

    上文说到已经第一个 App已经可以运行,但是并不能调试! 经过细心发现,我察觉到VS刚开始进入了调试模式,但是一闪而过.也就是说调试失败了,此时需要等待一段时间才能打开此App,如果立即打开App 会 ...

  3. 别人的Linux私房菜(11)认识与学习BASH

    Linux下使用BASH   Bourne Again Shell        另外一种由用于Unix的伯克利大学的Bill Joy设计的C Shell 系统中合法的shell会写入到/etc/sh ...

  4. # 2019-2020-3 《Java 程序设计》第二周学习总结

    2019-2020-3 <Java 程序设计>第二周学习总结 1.通过第二周的学习,利用教材和老师在蓝墨云上的一些教学视频以及通过老师和同学的博客以及一些课外资料,充分学习了第二.三章的内 ...

  5. numpy版本查看以及升降

     如题,参考:https://zhuanlan.zhihu.com/p/29026597 pip show numpy 查看numpy版本; pip install -U numpy==1.12.0, ...

  6. CQOI2018 简要题解

    破解D-H协议 列个式子会发现是BSGSBSGSBSGS的模板题,直接码就是了. 代码: #include<bits/stdc++.h> #include<tr1/unordered ...

  7. 【部署问题】解决Nginx: [error] open() "/usr/local/Nginx/logs/Nginx.pid" failed(2:No such file or directory)

    问题:环境问题 解决方法: /usr/local/nginx/sbin/nginx -c /usr/local/nginx/conf/nginx.conf 使用nginx -c的参数指定nginx.c ...

  8. Azkaban使用安装文档

    Azkaban使用安装文档 Azkaban简介 Azkaban的是什么 Azkaban是由Linkedin公司推出的一个批量工作流任务调度器,用于在一个工作流内以一个特定的顺序运行一组工作和流程.Az ...

  9. 设置navigation的title

      onReady(){         wx.setNavigationBarTitle({           title: this.data.title         });     } 

  10. android-基础编程-ExpandableListview

    ExpandableListView继承ListView,具有LIstVIew的基本功能.此外具有group/child,由组与子元素组成. 1.布局主要有是三个. a.主布局: <Expand ...