Description

有\(N(N\leq 200000)\)个数对\((a_i,b_i)(a_i,b_i,\leq 2000)\),求出\(\sum\limits_{i=1}^n\sum\limits_{j=i+1}^nC_{a_i+b_i+a_j+b_j}^{a_i+a_j}\) 答案对\(10^9+7\)取模

Solution

首先考虑\(C(n,m)\)的组合意义:在笛卡尔坐标系下只能向上和向右走,从原点走到\((m,n-m)\)的路径总数。

所以这个\(C_{a_i+b_i+a_j+b_j}^{a_i+a_j}\)就可以看成从\((0,0)\)走到\((a_i+a_j,b_i+b_j)\)的方案数,这个式子里有\(i\)的项和有\(j\)的项掺在了一起,尝试将他们拆开。这个方案数等价于从\((-a_i,-b_i)\)走到\((a_j,b_j)\)的方案数,这样一来\(i\)和\(j\)至少分开了。

然后试着不考虑\(j>i\)的限制,求出第三象限上所有点到\((a_i,b_i)\)的方案数,再减去从\((-a_i,-b_i)\)到\((a_i,b_i)\)的方案数,再除以\(2\)就是就是最终的答案了。

可以设\(f[i][j]\)表示第三象限内的点只能向上和向右走,走到\((i,j)\)的方案数。初值是\(f[a_i][b_i]=1\),转移就是每个点可以从它的左边或者右边走过来\(f[i][j]+=f[i-1][j]+f[i][j-1]\)。

Code

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<cctype>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using std::min;
using std::max;
using std::swap;
using std::vector;
const int M=2005;
const int N=200005;
const int ZYZ=1e9+7;
typedef double db;
typedef long long ll;
#define pb(A) push_back(A)
#define pii std::pair<int,int>
#define all(A) A.begin(),A.end()
#define mp(A,B) std::make_pair(A,B) int n,a[N],b[N];
int f[M<<1][M<<1];
int fac[M<<2],ifac[M<<2]; int getint(){
int X=0,w=0;char ch=0;
while(!isdigit(ch))w|=ch=='-',ch=getchar();
while( isdigit(ch))X=X*10+ch-48,ch=getchar();
if(w) return -X;return X;
} int ksm(int a,int b,int ans=1){
while(b){
if(b&1) ans=1ll*ans*a%ZYZ;
a=1ll*a*a%ZYZ;b>>=1;
}return ans;
} void init(int n){
fac[0]=ifac[0]=1;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%ZYZ;
ifac[n]=ksm(fac[n],ZYZ-2);
for(int i=n-1;i;i--) ifac[i]=1ll*ifac[i+1]*(i+1)%ZYZ;
} int C(int n,int m){
return 1ll*fac[n]*ifac[m]%ZYZ*ifac[n-m]%ZYZ;
} signed main(){
init(8000);
n=getint();
for(int i=1;i<=n;i++){
a[i]=getint(),b[i]=getint();
f[2001-a[i]][2001-b[i]]++;
}
for(int i=1;i<=4001;i++)
for(int j=1;j<=4001;j++)
f[i][j]=(1ll*f[i][j]+f[i-1][j]+f[i][j-1])%ZYZ;
int ans=0;
for(int i=1;i<=n;i++) ans=(ans+f[a[i]+2001][b[i]+2001])%ZYZ;
for(int i=1;i<=n;i++) ans=(ans-C(a[i]+b[i]<<1,b[i]<<1)+ZYZ)%ZYZ;
printf("%lld\n",1ll*ans*ksm(2,ZYZ-2)%ZYZ);
return 0;
}

[AGC001 E] BBQ Hard的更多相关文章

  1. AGC001 E - BBQ Hard 组合数学

    题目链接 AGC001 E - BBQ Hard 题解 考虑\(C(n+m,n)\)的组合意义 从\((0,0)\)走到\((n,m)\)的方案数 从\((x,y)\)走到\((x+n,y+m)\)的 ...

  2. AGC001 E - BBQ Hard【dp+组合数学】

    首先直接按要求列出式子是\( \sum_{i=1}^{n}\sum_{j=i+1}^{n}C_{a_i+a_j+b_i+b_j}^{a_i+a_j} \) 这样显然过不了,因为ab的数据范围比较小,所 ...

  3. AGC001 E - BBQ Hard [组合数]

    这题就是要求 \(\sum_{i=1}^{n} \sum_{j=i+1}^{n} C(a_i+a_j+b_i+b_j,a_i+a_j)\) 考虑搞一搞,\(C(a_i+a_j+b_i+b_j,a_i+ ...

  4. 【AtCoder】AGC001

    AGC001 A - BBQ Easy 从第\(2n - 1\)个隔一个加一下加到1即可 #include <bits/stdc++.h> #define fi first #define ...

  5. A*G#C001

    AGC001 A BBQ Easy 贪心. https://agc001.contest.atcoder.jp/submissions/7856034 B Mysterious Light 很nb这个 ...

  6. 【AGC板刷记录】

    这个帖子,是在自己学知识点累了的时候就看看\(AGC\)的题目来休息. 而且白天上课可以做( AGC-001 \(A\ BBQ Easy\) 考虑从小到大排,相邻两个取为一对. BBQ Easy #i ...

  7. AGC001[BCDE] 题解

    A没意思 F太难 所以大概近期的AGC题解都是BCDE的 然后特殊情况再说 开始刷AGC的原因就是计数太差 没有脑子 好几个学长都推荐的AGC所以就开始刷了 = = 大概两天三篇的速度?[可能也就最开 ...

  8. AGC01 A - BBQ Easy

    目录 题目链接 题解 代码 题目链接 AGC01 A - BBQ Easy 题解 贪心 排序之后从大到小,没两组取小的那个 代码 #include<cstdio> #include< ...

  9. 【agc001e】BBQ HARD(动态规划)

    [agc001e]BBQ HARD(动态规划) 题面 atcoder 洛谷 题解 这些agc都是写的整场的题解,现在还是把其中一些题目单独拿出来发 这题可以说非常妙了. 我们可以把这个值看做在网格图上 ...

随机推荐

  1. linux安装mysql和httpd

    1.安装前检查是否已经安装[root@localhost1 ~]# rpm -qa |grep mysql 2.安装wget包:[root@localhost1 ~]# yum -y install ...

  2. 使用sublime 正则匹配替换大批量代码

    1,在使用Django框架时,导入之前没有使用框架完成的网页,这时会遇到静态文件地址不匹配的问题,需要大量修改. 研究了一下sublime编译器,大家都使用正则匹配替换 2,位置在查找--替换与匹配, ...

  3. Chapter3_操作符_逻辑操作符

    逻辑操作符与(&&)或(||)非(^)能够对布尔类型的数据类型进行操作,并且生成布尔值,和关系操作符的产生的数据类型是一样的.需要注意的不多,有以下几点: (1)在需要使用string ...

  4. 【repost】JavaScript 基本语法

    JavaScript 基本语法,JavaScript 引用类型, JavaScript 面向对象程序设计.函数表达式和异步编程 三篇笔记是对<JavaScript 高级程序设计>和 < ...

  5. java时间与js时间

    这是一个由java获取的系统时间与js获取的系统时间不一致导致的测试缺陷 定义方式: java Date date = new Date(); js var Date date2 = new Date ...

  6. PMP:1.引论

    全球项目管理业界定义的最重要的价值 观是责任.尊重.公正和诚实(成功准则).   项目是为创造独特的产品.服务或成果而进行的临时性工作:   开展项目是为了通过可交付成果达成目标.目标指的是工作所指向 ...

  7. git 依据SHA值提取文件patch

    git format-patch -M master //当前分支所有超前master的提交 git format-patch -s SHA值 //此SHA值提交以后的所有PATCH git form ...

  8. Visual Studio 2015 将json转换为实体类

    最新写的一个接口需要接收json参数,然后序列化为实体类然后再进行后面的逻辑处理.因为json中键值对比较多,逐一去手写实体中的每个属性太麻烦,于是寻思是否有这样的工具可以将json转换为实体类. 经 ...

  9. GitHub(从安装到使用)

    一.安装Git for Windows(又名msysgit)  下载地址: https://git-for-windows.github.io/  在官方下载完后,安装到Windows Explore ...

  10. 什么是CDN及CDN加速原理

    目录 CDN是什么? CDN的相关技术 负载均衡技术 动态内容分发与复制技术 缓存技术 谁需要CDN? CDN的不足 随着互联网的发展,用户在使用网络时对网站的浏览速度和效果愈加重视,但由于网民数量激 ...