作者:简之
链接:https://www.zhihu.com/question/21094489/answer/86273196
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

在很久以前的情人节,大侠要去救他的爱人,但魔鬼和他玩了一个游戏。

魔鬼在桌子上似乎有规律放了两种颜色的球,说:“你用一根棍分开它们?要求:尽量在放更多球之后,仍然适用。”

<img src="https://pic1.zhimg.com/50/5aff2bcdbe23a8c764a32b1b5fb13b71_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

于是大侠这样放,干的不错?

<img src="https://pic1.zhimg.com/50/3dbf3ba8f940dfcdaf877de2d590ddd1_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

然后魔鬼,又在桌上放了更多的球,似乎有一个球站错了阵营。

<img src="https://pic4.zhimg.com/50/0b2d0b26ec99ee40fd14760350e957af_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

SVM就是试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙。

<img src="https://pic4.zhimg.com/50/4b9e8a8a87c7982c548505574c13dc05_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

现在即使魔鬼放了更多的球,棍仍然是一个好的分界线。

<img src="https://pic1.zhimg.com/50/7befaafc45763b9c4469abf245dc98cb_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

然后,在SVM 工具箱中有另一个更加重要的 trick。 魔鬼看到大侠已经学会了一个trick,于是魔鬼给了大侠一个新的挑战。

<img src="https://pic2.zhimg.com/50/558161d10d1f0ffd2d7f9a46767de587_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

现在,大侠没有棍可以很好帮他分开两种球了,现在怎么办呢?当然像所有武侠片中一样大侠桌子一拍,球飞到空中。然后,凭借大侠的轻功,大侠抓起一张纸,插到了两种球的中间。

<img src="https://pic3.zhimg.com/50/55d7ad2a6e23579b17aec0c3c9135eb3_hd.jpg" data-rawwidth="300" data-rawheight="167" class="content_image" width="300">

现在,从魔鬼的角度看这些球,这些球看起来像是被一条曲线分开了。

<img src="https://pic2.zhimg.com/50/e5d5185561a4d5369f36a9737fc849c6_hd.jpg" data-rawwidth="300" data-rawheight="225" class="content_image" width="300">

再之后,无聊的大人们,把这些球叫做 「data」,把棍子 叫做 「classifier」, 最大间隙trick 叫做「optimization」, 拍桌子叫做「kernelling」, 那张纸叫做「hyperplane」。

图片来源:Support Vector Machines explained well

故事描述SVM----支持向量机/support vector machine (SVM)的更多相关文章

  1. 支持向量机(Support Vector Machine)-----SVM之SMO算法(转)

    此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的 ...

  2. 支持向量机 support vector machine

    SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...

  3. 【机器学习实战】第6章 支持向量机(Support Vector Machine / SVM)

    第6章 支持向量机 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/lates ...

  4. 关于SVM(support vector machine)----支持向量机的一个故事

    一.预告篇: 很久很久以前,有个SVM, 然后,……………………被deep learning 杀死了…………………………………… . 完结……撒花 二.正式篇 好吧,关于支持向量机有一个故事 ,故事是 ...

  5. 支持向量机(Support Vector Machine,SVM)

    SVM: 1. 线性与非线性 核函数: 2. 与神经网络关系 置信区间结构: 3. 训练方法: 4.SVM light,LS-SVM: 5. VC维 u-SVC 与 c-SVC 区别? 除参数不同外, ...

  6. 机器学习经典算法笔记-Support Vector Machine SVM

    可供使用现成工具:Matlab SVM工具箱.LibSVM.SciKit Learn based on python 一 问题原型 解决模式识别领域中的数据分类问题,属于有监督学习算法的一种. 如图所 ...

  7. 第八篇:支持向量机 (Support Vector Machine)

    前言 本文讲解如何使用R语言中e1071包中的SVM函数进行分类操作,并以一个关于鸢尾花分类的实例演示具体分类步骤. 分析总体流程 1. 载入并了解数据集:2. 对数据集进行训练并生成模型:3. 在此 ...

  8. 支持向量机SVM(Support Vector Machine)

    支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...

  9. Support Vector Machine (1) : 简单SVM原理

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

随机推荐

  1. (转).net反编译工具JustDecompile

    开源的反编译工具  JustDecompile https://www.telerik.com/blogs/justdecompile-engine-becomes-open-source https ...

  2. Pandas聚合

    数据聚合 import pandas as pd from pandas import Series import numpy as np # 准备数据 df = pd.DataFrame([[-0. ...

  3. Linux下Mysql安装(tar安装)

    1.为数据库创建软件目录以及数据存放目录 #mysql软件目录 mkdir /software/ #mysql数据文件目录 mkdir /data/mysql 2.上传mysql-XXXXXX.tar ...

  4. NC 6系总账凭证联查原始单据

    单据联查凭证可以找个如收款结算单的仿写一个. 而总账凭证联查单据则需要实现联查单据的类,重新写一个类.并把类注册进数据库. 最终效果: public class QuerySellcarryBillS ...

  5. spring源码分析之初始化过程

    1.org.springframework.web.context.ContextLoaderListener 一个ServletContextListener,web容器启动监听器 1.1内有成员C ...

  6. Java第四次实验

    实验一: Android Stuidio的安装测试: 参考<Java和Android开发学习指南(第二版)(EPUBIT,Java for Android 2nd)>第二十四章: 参考ht ...

  7. assetBundle 中的prefeb资源图片显示粉色方框

    assetBundle打包的资源是有平台属性的,当移动端iOS或者Android AssetBundle资源 在editor 加载的时候,比如TextMeshPro中的字体就不能正确加载 pc端调试, ...

  8. AX_List

    List list = new List(Types::Class);  CustTable custTable;  while select custTable  {      list.addEn ...

  9. Python 语法提示vim配置

    1. pydiction 2. 默认 Vim 7.xx以上版本 python_pydiction.vim -- Vim plugin that autocompletes Python code. c ...

  10. VBA找相似体积的单元格值

    在VBA中做了一个比较体积,如果体积相似就显示隔壁单元格的内容 Function VC(a, b As Range) 'VolumeCompare体积比较 Dim arry() As Variant ...