CF 633 E. Binary Table
题目大意:给定一个棋盘,棋盘上有0或1,你可以将一整行取反或者一整列取反,要使得最后剩的1最少。\((1\le n\le 20,1\le m\le 100000)\)。
一个容易想到的思路就是先枚举行是否取反,然后列就看1的个数是否大于\(\frac{n}{2}\)考虑是否取反。
我们设函数\(f(x)\)表示\(min(x_0,x_1)\),\(x\)在二进制状态下0或1最少的个数。
我们设行的取反状态为\(k\),每列的最终状态就是\(sta[i]\ xor\ k\),对答案的贡献就是\(f(sta[i]\ xor\ k)\)。
所以我们构造\(g(x)\)表示初始状态为\(x\)的列的数量。答案函数\(A(x)\)表示行的取反状态为\(x\)的答案,则\(A=f*g\)。
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,m;
int s[25][100005];
ll f[1<<20],g[1<<20];
int Count(int s) {
int ans=0;
for(;s;s>>=1) ans+=s&1;
return ans;
}
void FWT_xor(ll *a,int n,int flag) {
for(int len=2;len<=n;len<<=1) {
for(int mid=len>>1,i=0;i<n;i+=len) {
for(int j=0;j<mid;j++) {
ll u=a[i+j],v=a[i+j+mid];
a[i+j]=u+v,a[i+j+mid]=u-v;
if(flag==-1) a[i+j]/=2,a[i+j+mid]/=2;
}
}
}
}
char t[100005];
int main() {
n=Get(),m=Get();
for(int i=1;i<=n;i++) {
scanf("%s",t+1);
for(int j=1;j<=m;j++)
s[i][j]=t[j]-'0';
}
for(int i=1;i<=m;i++) {
int now=0;
for(int j=1;j<=n;j++) now=(now<<1)|s[j][i];
g[now]++;
}
for(int s=0;s<(1<<n);s++) {
f[s]=Count(s);
f[s]=min(f[s],n-f[s]);
}
FWT_xor(f,1<<n,1),FWT_xor(g,1<<n,1);
for(int i=0;i<(1<<n);i++) f[i]*=g[i];
FWT_xor(f,1<<n,-1);
ll ans=1e9;
for(int i=0;i<(1<<n);i++) ans=min(ans,f[i]);
cout<<ans;
return 0;
}
CF 633 E. Binary Table的更多相关文章
- 【CF662C】Binary Table(FWT)
[CF662C]Binary Table(FWT) 题面 洛谷 CF 翻译: 有一个\(n*m\)的表格(\(n<=20,m<=10^5\)), 每个表格里面有一个\(0/1\), 每次可 ...
- [CF662C Binary Table][状压+FWT]
CF662C Binary Table 一道 FWT 的板子-比较难想就是了 有一个 \(n\) 行 \(m\) 列的表格,每个元素都是 \(0/1\),每次操作可以选择一行或一列,把 \(0/1\) ...
- CROC 2016 - Final Round [Private, For Onsite Finalists Only] C. Binary Table FWT
C. Binary Table 题目连接: http://codeforces.com/problemset/problem/662/C Description You are given a tab ...
- CF 633 F. The Chocolate Spree 树形dp
题目链接 CF 633 F. The Chocolate Spree 题解 维护子数答案 子数直径 子数最远点 单子数最长直径 (最长的 最远点+一条链) 讨论转移 代码 #include<ve ...
- 【CF662C】Binary Table 按位处理
[CF662C]Binary Table 题意:给你一个$n\times m$的01网格,你可以进行任意次操作,每次操作是将一行或一列的数都取反,问你最多可以得到多少个1? $n\le 20,m\le ...
- CF-1440C2 Binary Table (Hard Version) (构造,模拟)
Binary Table (Hard Version) 题意 \(n*m(2\le n,m\le 100)\) 的01矩阵,每次可以选择一个宽度为2的子矩阵,将四个位置中的任意3个进行翻转,即0变1, ...
- CF662C Binary Table【FWT】
CF662C Binary Table 题意: 给出一个\(n\times m\)的\(01\)矩阵,每次可以反转一行或者一列,问经过若干次反转之后,最少有多少个\(1\) \(n\le 20, m\ ...
- 「CF662C」 Binary Table
「CF662C」 Binary Table 题目链接 题目所给的 \(n\) 很小,于是我们可以考虑这样一种朴素做法:暴力枚举第 \(i\) 行是否翻转,这样每一行的状态就确定了,这时取每一列 \(0 ...
- CF 662C Binary Table
用FWT优化计算. 首先发现行数很小,想到一个暴力的方法,就是以一个二进制位$0$表示这一行不翻转而二进制位$1$表示这一行翻转,然后$2^n$枚举出所有行的翻转情况,再$O(m)$计算所有的结果. ...
随机推荐
- Python机器学习笔记:使用Keras进行回归预测
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何 ...
- 完整的一次 HTTP 请求响应过程(一)
因特网无疑是人类有史以来最伟大的设计,它互联了全球数亿台计算机.通讯设备,即便位于地球两端的用户也可在顷刻间完成通讯. 可以说『协议』是支撑这么一个庞大而复杂的系统有条不紊运作的核心,而所谓『协议』就 ...
- Failed to convert value of type 'java.lang.String' to required type 'java.time.LocalDate';
springboot jdbc查询使用LocalDate报:Failed to convert value of type 'java.lang.String' to required type 'j ...
- functions文件详细分析和说明
bash&shell系列文章:http://www.cnblogs.com/f-ck-need-u/p/7048359.html /etc/rc.d/init.d/functions几乎被/e ...
- 按值传递 vs. 按指针传递
按值传递还是指针传递? 变量赋值有两种方式:按值传递.按"指针"传递(指针也常称为"引用").不同的编程语言赋值的方式不一样,例如Python是按"指 ...
- IOS 获取的时间显示为NAN 解决方法
var regTime= item.BeginDate.replace(/\-/g, "/"); ------ item.BeginDate 我的日期年月日的 (/\-/g, ...
- 部署DTCMS到Jexus遇到的问题及解决思路---部署
上一篇我们环境已经准备完成,此时可以部署了,我们就以dtcms作为例子,http://bbs.dtcms.net/forum.php?mod=viewthread&tid=2420&e ...
- 13.Linux键盘按键驱动 (详解)
在上一节分析输入子系统内的intput_handler软件处理部分后,接下来我们开始写input_dev驱动 本节目标: 实现键盘驱动,让开发板的4个按键代表键盘中的L.S.空格键.回车键 1.先来介 ...
- C#多线程——同步
多个线程(不仅仅局限于相同进程)如果需要访问相同的可变资源的话就可能需要考虑到线程同步的手段.CPU的线程和进程管控我这里就不去说了,计算机组成原理里面的东西 那么既然要让线程的步调一致,那么我们首先 ...
- JAVA的高并发基础认知 一
一.多线程的基本知识 1.1进程与线程的介绍 程序运行时在内存中分配自己独立的运行空间,就是进程 线程:它是位于进程中,负责当前进程中的某个具备独立运行资格的空间. 进程是负责整个程序的运行,而线程是 ...