2142: 礼物

Description

一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。

Input

输入的第一行包含一个正整数P,表示模;
第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;
以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。

Output

若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。

数据规模和约定

设 $ P = \prod_{i=1}^n p_i^{c_i} $ 且 $ p_i $ 为质数

$1 \leqslant n \leqslant 10^9,1 \leqslant m \leqslant 5,1 \leqslant p_i^{c_i} \leqslant 10^5 $。

拓展卢卡斯和中国剩余定理的裸题

题目可以转换为求

\[\prod_{i=1}^n C_{n- \sum_{j=0}^{i-1} w[j]}^{w[i]}
\]

剩下的就是求 $ C_n^m % p $ 的问题了。

因为n,m,p都很大,所以我们可以使用拓展卢卡斯求出对于每个 $ p_i^{c_i} $ 余数,然后通过中国剩余定理合并即可。

#include<bits/stdc++.h>
using namespace std;
#define REP(i,st,ed) for(register int i=st,i##end=ed;i<=i##end;++i)
#define DREP(i,st,ed) for(register int i=st,i##end=ed;i>=i##end;--i)
#define pii pair<ll,ll>
typedef long long ll;
inline int read(){
int x;
char c;
int f=1;
while((c=getchar())!='-' && (c<'0' || c>'9'));
if(c=='-') c=getchar(),f=-1;
x=c^'0';
while((c=getchar())>='0' && c<='9') x=(x<<1)+(x<<3)+(c^'0');
return x*f;
}
inline ll readll(){
ll x;
char c;
ll f=1;
while((c=getchar())!='-' && (c<'0' || c>'9'));
if(c=='-') c=getchar(),f=-1;
x=c^'0';
while((c=getchar())>='0' && c<='9') x=(x<<1ll)+(x<<3ll)+(c^'0');
return x*f;
}
vector<pii> vc;
ll ksm(ll x,ll y,ll mod){
ll res=1;
while(y){
if(y&1ll) res=res*x%mod;
x=x*x%mod;
y>>=1ll;
}
return res;
}
ll exgcd(ll &x,ll &y,ll a,ll b){
if(!b){
x=1,y=0;
return a;
}
ll res=exgcd(y,x,b,a%b);
y-=a/b*x;
return res;
}
ll inv(ll a,ll b){
a%=b;
ll x,y;
exgcd(x,y,a,b);
x=(x%b+b)%b;
if(!x) x+=b;
return x;
}
ll fac(ll x,ll u,ll mod){
if(!x || x==1) return 1;
ll ans=1,num=1;
if(x/mod){
for(ll i=2;i<mod;++i)
if(i%u) num=num*i%mod;
ans=ans*ksm(num,x/mod,mod);
}
ans=ans*fac(x/u,u,mod)%mod;
x%=mod;
for(ll i=2;i<=x;++i)
if(i%u) ans=ans*i%mod;
return ans;
}
ll calc(ll x,ll u){
ll res=0;
for(;x;x/=u) res+=x/u;
return res;
}
ll C(ll n,ll m,ll u,ll v){
ll x=fac(n,u,v),y=fac(m,u,v),z=fac(n-m,u,v);
// cout<<n<<' '<<m<<' '<<v<<' '<<x<<' '<<y<<' '<<z<<endl;
ll num=calc(n,u)-calc(m,u)-calc(n-m,u);
x=x*inv(y,v)%v*inv(z,v)%v;
return x*ksm(u,num,v)%v;
}
ll exLucas(ll n,ll m,ll mod){
if(m>n) return 0;
ll ans=0;
REP(i,0,vc.size()-1){
pii u=vc[i];
ll x=u.first,y=u.second;
ans=(ans+inv(mod/y,y)*(mod/y)%mod*C(n,m,x,y)%mod)%mod;
}
return ans;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("china.in","r",stdin);
freopen("china.out","w",stdout);
#endif
ll mod=readll(),n=readll(),ans=1;
int m=read(),u=mod;
for(ll i=2;i*i<=u;++i){
if(u%i) continue;
ll x=1;
while(u%i==0) u/=i,x*=i;
vc.push_back(make_pair(i,x));
// cout<<i<<' '<<x<<endl;
}
if(u!=1) vc.push_back(make_pair(u,u));
// cout<<u<<endl;
REP(i,1,m){
ll x=readll();
ans=ans*exLucas(n,x,mod)%mod;
if(!ans){
printf("Impossible\n");
return 0;
}
n-=x;
}
printf("%lld\n",ans);
return 0;
}

bzoj2142: 礼物的更多相关文章

  1. BZOJ2142 礼物 扩展lucas 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8110015.html 题目传送门 - BZOJ2142 题意概括 小E购买了n件礼物,送给m个人,送给第i个人礼 ...

  2. [BZOJ2142]礼物(扩展Lucas)

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2286  Solved: 1009[Submit][Status][Discuss] ...

  3. BZOJ2142礼物——扩展卢卡斯

    题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼 ...

  4. BZOJ2142 礼物 【扩展Lucas】

    题目 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼物, ...

  5. [bzoj2142]礼物(扩展lucas定理+中国剩余定理)

    题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...

  6. BZOJ2142: 礼物(拓展lucas)

    Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店 ...

  7. bzoj2142 礼物——扩展卢卡斯定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...

  8. 【BZOJ2142】礼物(拓展卢卡斯定理)

    [BZOJ2142]礼物(拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 显然如果\(\sum w_i>n\)无解. 否则答案就是:\(\displaystyle \prod_{i=1}^m{n- ...

  9. 【BZOJ2142】礼物 组合数+CRT

    [BZOJ2142]礼物 Description 小E从商店中购买了n件礼物,打算送给m个人,其中送给第i个人礼物数量为wi.请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某个人在 ...

随机推荐

  1. vba 弹框

    '第三个按钮,上传数据到数据库 Private Sub CommandButton1_Click() str1 = "abcde" str2 = InputBox("请输 ...

  2. DIV实现水平或垂直滚动条

    添加样式: 在html中,需要创建2层div来实现.一个div包含另一个div: 效果:

  3. wpf项目打开多个窗体在任务栏只有一个任务

    原文:wpf项目打开多个窗体在任务栏只有一个任务 如果在wpf里,在一个父窗体上打开子窗体,只在任务栏显示一个任务,不是qq聊天窗口俩人聊天人显示俩给那样,只能显示 一个 private void B ...

  4. 验证码处理类:UnCodebase.cs + BauDuAi 读取验证码的值(并非好的解决方案)

    主要功能:变灰,去噪,等提高清晰度等 代码类博客,无需多说,如下: public class UnCodebase { public Bitmap bmpobj; public UnCodebase( ...

  5. 微信小程序案例:获取微信访问用户的openid

    在微信开发项目中,获取openid是项目常遇的问题,本文通过主要讲解实现在微信小程序中如何获取用户的openid,案例实现非常简单 具体实现方法是通过登录接口获取登录凭证,然后通过request请求微 ...

  6. 【强化学习】python 实现 q-learning 例三(例一改写)

    本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10139738.html 例一的代码是函数式编写的,这里用面向对象的方式重新撸了一遍.好处是, ...

  7. JDK8漫谈——增强接口

    解决什么问题 向下兼容.添加方法,所有的实现类必须实现此方法,否则会编译报错.这意味着每一次的接口升级都会伤筋动骨.但是这是一把双刃剑一定要把握好场景,不要滥用. 类爆炸.使用时,需要辅助类.即要记忆 ...

  8. python2.6升级到3.3.0 以及依赖库在迁移时的处理

    线上服务器python版本默认是2.6,由于业务程序要求,需要将python升级到3.3.0, 操作记录如下: Cenots6.8默认安装的是2.6版本,要更新升级需安装下gcc: [root@ope ...

  9. js控制css时注意

    font-size:10px--------e.style.fontSize="10px " 属性名:font-size--------fontSize; 属性值:10px---- ...

  10. Notes of Daily Scrum Meeting(12.25)

    今天在学姐的帮助下,我们终于把网络连接的部分连通了,这对我们是一个很大的鼓舞,也找到了前期 连不通的问题在哪里,这让我们重新有了进行下去的勇气和决心,我们会在最后这几天把前端和后端结合, 做出我们最后 ...