Tensorflow 是一个为数值计算(最常见的是训练神经网络)设计的流行开源库。在这个框架中,计算流程通过数据流程图(data flow graph)设计,这为更改操作结构与安置提供了很大灵活性。TensorFlow 允许多个 worker 并行计算,这对必须通过处理的大量训练数据训练的神经网络是有益的。此外,如果模型足够大,这种并行化有时可能是必须的。在本文中,我们将探讨 TensorFlow 的分布式计算机制。

TensorFlow 计算图示例

数据并行 VS. 模型并行

当在多个计算节点间分配神经网络训练时,通常采用两种策略:数据并行和模型并行。在前者中,在每个节点上单独创建模型的实例,并馈送不同的训练样本;这种架构允许更高的训练吞吐量。相反,在模型并行中,模型的单一实例在多个节点间分配,这种架构允许训练更大的模型(可能不一定适合单节点的存储器http://aomenyonli.cn/)。如果需要,也可以组合这两种策略,使给定模型拥有多个实例,每个实例跨越多个节点。在本文中,我们将重点关注数据并行。

数据并行与模型并行的不同形式。左:数据并行;中:模型并行;右:数据并行与模型并行。

TensorFlow 中的数据并行

当使用 TensorFlow 时,数据并行主要表现为两种形式:图内复制(ihttp://dajinnylee.cn/n-graph replication)和图间复制(between-graph replication)。两种策略之间最显著的区别在于流程图的结构与其结果。

图内复制

图内复制通常被认为是两种方法中更简单和更直接(但更不可扩展的)的方法。当采用这种策略时,需要在分布式的主机上创建一个包含所有 worker 设备中副本的流程图。可以想象,随着 worker 数量的增长,这样的流程图可能会大幅扩展,这可能会对模型性能产生不利影响。然而,对于小系统(例如,双 GPU 台式计算机),由于其简单性,图内复制可能是最优的。

以下是使用单个 GPU 的基线 TensorFlow 方法与应用图内复制方法的代码片段的对比。考虑到图内复制方法与扩展(scaling)相关的问题,我们将仅考虑单机、多 GPU 配置的情况。这两个代码片段之间的差异非常小,它们的差异仅存在于:对输入数据的分块,使得数据在各 worker 间均匀分配,遍历每个含有 worker 流程图的设备,并将来自不同 worker 的结果连接起来。通过少量代码更改,我们可以利用多个设备,这种方法使可扩展性不再成为大障碍,从而在简单配置下更受欢迎。

# single GPU (baseline) import tensorflow as tf # place the initial data on the cpu withtf.device('/cpu:0'): input_data = tf.Variable([[1.,2., 3.], [4., 5., 6.],[7., 8., 9.], [10., 11.,12.]]) b = tf.Variable([[1.],[1.], [2.]]) # compute the result on the 0th gpu withtf.device('/gpu:0'): output = tf.matmul(input_data, b) # create a session and run with tf.Session() as sess:sess.run(tf.global_variables_initializer()) print sess.run(output) # in-graph replication import tensorflow as tf num_gpus = 2 # place the initial data on the cpuwith tf.device('/cpu:0'): input_data = tf.Variable([[1.,2., 3.], [4., 5., 6.],[7., 8., 9.], [10., 11.,12.]]) b = tf.Variable([[1.],[1.], [2.]]) # split the data into chunks for each gpu inputs= tf.split(input_data, num_gpus) outputs = [] # loop over available gpus and pass input data for i in range(num_gpus): withtf.device('/gpu:'+str(i)):outputs.append(tf.matmul(inputs[i], b)) # merge the results of the devices with tf.device('/cpu:0'): output = tf.concat(outputs,axis=0) # create a session and run with tf.Session() as sess:sess.run(tf.global_variables_initializer()) print sess.run(output)

这些更改也可以通过检查下面的 TensorFlow 流程图来可视化。增加的 GPU 模块说明了原始方法的扩展方式。

图内复制的可视化。左:原始图。右:图内复制的结果图

TensorFlow分布式计算机制解读:以数据并行为重的更多相关文章

  1. 分布式机器学习系统笔记(一)——模型并行,数据并行,参数平均,ASGD

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 文章索引::"机器学 ...

  2. C#并行编程-PLINQ:声明式数据并行

    目录 C#并行编程-相关概念 C#并行编程-Parallel C#并行编程-Task C#并行编程-并发集合 C#并行编程-线程同步原语 C#并行编程-PLINQ:声明式数据并行 背景 通过LINQ可 ...

  3. 转载:Java Lock机制解读

    Java Lock机制解读 欢迎转载: https://blog.csdn.net/chengyuqiang/article/details/79181229 1.synchronized synch ...

  4. C#并行编程-PLINQ:声明式数据并行-转载

    C#并行编程-PLINQ:声明式数据并行   目录 C#并行编程-相关概念 C#并行编程-Parallel C#并行编程-Task C#并行编程-并发集合 C#并行编程-线程同步原语 C#并行编程-P ...

  5. 一、并行编程 - 数据并行 System.Threading.Tasks.Parallel 类

    一.并行概念 1.并行编程 在.NET 4中的并行编程是依赖Task Parallel Library(后面简称为TPL) 实现的.在TPL中,最基本的执行单元是task(中文可以理解为"任 ...

  6. SIMD数据并行(三)——图形处理单元(GPU)

    在计算机体系中,数据并行有两种实现路径:MIMD(Multiple Instruction Multiple Data,多指令流多数据流)和SIMD(Single Instruction Multip ...

  7. SIMD数据并行(二)——多媒体SIMD扩展指令集

    在计算机体系中,数据并行有两种实现路径:MIMD(Multiple Instruction Multiple Data,多指令流多数据流)和SIMD(Single Instruction Multip ...

  8. Redisson 分布式锁实战与 watch dog 机制解读

    Redisson 分布式锁实战与 watch dog 机制解读 目录 Redisson 分布式锁实战与 watch dog 机制解读 背景 普通的 Redis 分布式锁的缺陷 Redisson 提供的 ...

  9. [源码解析] PyTorch分布式优化器(2)----数据并行优化器

    [源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之 ...

随机推荐

  1. CF1110E Magic Stones 差分

    传送门 将原数组差分一下,设\(d_i = c_{i+1} - c_i\) 考虑在\(i\)位置的一次操作会如何影响差分数组 \(d_{i+1}' = c_{i+1} - (c_{i+1} + c_{ ...

  2. 限流——spring-cloud-zuul-ratelimit

    先留个坑,慢慢补 git代码Demo:https://github.com/islowcity/spring-cloud-zuul-ratelimiter.git 有时间再写分析

  3. 使用canvas实现一个圆球的触壁反弹

    HTML <canvas id="canvas" width="500" height="500" style="borde ...

  4. M2postmortem

    设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 答:我们的软件主要解决信息提取的问题.定义清晰:要提取的内容包括于计算机科学相关内容的标题.作者. ...

  5. Ubuntu14.04安装PyMuPDF

    最近写的一个东西需要将pdf转成图片然后放在网页上展示,找到了个非常好用的轮子叫做PyMuPDF,在windows上测试的时候跑的666,在ubuntu上安装依赖的时候,简直万脸懵逼.github上给 ...

  6. rabbitMq实现与zookeeper类似的watcher功能

    场景:A.B.C.D(可以是一个机器的不同进程,也可以是不同机器的进程)启动了相同的项目,使用同一个数据库.但是,如果A修改了数据库的数据,需要B.C.D在很短的时间能够知道数据库发生了修改.当然可以 ...

  7. M2 终审

    1.团队成员简介 左边:马腾跃 右边:陈谋 左上:李剑锋  左下:仉伯龙 右:卢惠明 团队成员及博客: 李剑锋:        Blog:      http://www.cnblogs.com/Po ...

  8. 2-Twenty Fifth Scrum Meeting-20151231

    前言 因为服务器关闭,我们的开发项目也遭遇停滞一个星期.与网站开发负责人员协商之后,29号开放服务器.我们的项目也能够继续下去.比规定的开发时间(截止为2015/12/29)推迟. 事项安排 1.开发 ...

  9. 网络:OSPF理解

    OSPF(开放最短路径优先)协议使用Dijkstra算法,常见的版本有:OSPFv2.OSPFv3等.以下主要介绍OSPFv2,OSPFv3是面向IPv6的且不兼容IPv4. 1.工作过程: 1)每台 ...

  10. 转发:C#操作SQL Server数据库

    转发自:http://www.cnblogs.com/rainman/archive/2012/03/13/2393975.html 1.概述 2.连接字符串的写法 3.SqlConnection对象 ...