证明:$sin10^0$为无理数.

分析:此处用$sin$的三倍角公式,结合多项式有有理根必须满足的系数之间的关系可以证明.

评:证明$sin9^0$为无理数就不那么简单.思路:先利用$sin54^0=cos36^0$得到$sin18^0$的值,

从而得到$cos18^0$的值$$\frac{\sqrt{10+2\sqrt{5}}}{4}$$是无理数,从而利用$cos$的二倍角公式易得 $sin9^0$是无理数.

MT【16】证明无理数(2)的更多相关文章

  1. MT【15】证明无理数(1)

    证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan1 ...

  2. Python黑帽编程 3.1 ARP欺骗

    Python灰帽编程 3.1 ARP欺骗 ARP欺骗是一种在局域网中常用的攻击手段,目的是让局域网中指定的(或全部)的目标机器的数据包都通过攻击者主机进行转发,是实现中间人攻击的常用手段,从而实现数据 ...

  3. Python黑客编程ARP欺骗

    Python灰帽编程 3.1 ARP欺骗 ARP欺骗是一种在局域网中常用的攻击手段,目的是让局域网中指定的(或全部)的目标机器的数据包都通过攻击者主机进行转发,是实现中间人攻击的常用手段,从而实现数据 ...

  4. 实验三——SDRAM

    一.运行环境 开发板:jz2440 系统:  ubuntu12.04 编译器:arm-linux-gcc 二.特殊寄存器 sdram的操作无需按照时序图来设置,只要设置好相关的13个寄存器,arm处理 ...

  5. JavaScript学习总结(十六)——Javascript闭包(Closure)

    原文地址: http://www.cnblogs.com/xdp-gacl/p/3703876.html 闭包(closure)是Javascript语言的一个难点,也是它的特色, 很多高级应用都要依 ...

  6. 深入理解Plasma(四)Plasma Cash

    这一系列文章将围绕以太坊的二层扩容框架 Plasma,介绍其基本运行原理,具体操作细节,安全性讨论以及未来研究方向等.本篇文章主要介绍在 Plasma 框架下的项目 Plasma Cash. 在上一篇 ...

  7. 如何以SYSTEM用户运行CMD

    有的时候有些文件在管理员账户不能删除,这个时候需要在SYSTEM用户下删除. 可以通过以SYSTEM权限运行CMD来删除某些文件或目录的目的. 1. 从微软网站下载PSTool. 2. 以管理员运行C ...

  8. JZ2440 裸机驱动 第6章 存储控制器

    本章目标:     了解S3C2410/S3C2440地址空间的布局     掌握如何通过总线形式访问扩展的外设,比如内存.NOR Flash.网卡等 ························ ...

  9. jz2440存储管理实验【学习笔记】

    平台:jz2440 作者:庄泽彬(欢迎转载,请注明作者) 说明:韦东山一期视频学习笔记 简介:先来简单的说明一下这次的实验,看看下图,我们的程序通过烧录器下载到nandflash当中去,之后在启动的时 ...

随机推荐

  1. Kubernetes-v1.12.0基于kubeadm部署

    1.主机规划 #master节点(etcd/apiserver/scheduler/controller manager)master.example.cometh0: 192.168.0.135et ...

  2. Linux下安装jdk+maven +git

            Linux系统下的操作,一直不是很熟悉.作为一名java开发工程师,感到很惭愧.因此把自己的阿里云服务器安装环境相关的东西给记录下来,方便后续查阅.         本文所采用的Lin ...

  3. C#基础巩固(3)-Linq To XML 读取XML

    记录下一些读取XML的方法,以免到用的时候忘记了,还得花时间去找. 一.传统写法读取XML 现在我有一个XML文件如下: 现在我要查找名字为"王五"的这个人的 Id 和sex(性别 ...

  4. [python][spark]wholeTextFiles 读入多个文件的例子

    $pwd /home/training/mydir $cat file1.json {"firstName":"Fred", "lastName&qu ...

  5. BJOI2018简要题解

    BJOI2018简要题解 D1T1 二进制 题意 pupil 发现对于一个十进制数,无论怎么将其的数字重新排列,均不影响其是不是 \(3\) 的倍数.他想研究对于二进制,是否也有类似的性质. 于是他生 ...

  6. Html页面雪花效果的实现

    简单介绍 昨天修改了一下博客所用的模板,冬天来了,给自己的博客加点雪花,感觉更有意境. 百度找到了非常多的结果,最终还是选用了cfs.snow.js,很赞压缩之后只有1kb左右,而且不会影响页面使用, ...

  7. linux 下隐藏进程的一种方法

    前言 本文所用到的工具在 https://github.com/gianlucaborello/libprocesshider 可以下载 思路就是利用 LD_PRELOAD 来实现系统函数的劫持 LD ...

  8. list 的 增 删

    增: 1. name = [] 2. name.append() 3. name.extend(name2) name2为可迭代的 name + name2 与之效果一样,合并为一个列表 4. nam ...

  9. Python-习题-11

    1,内容回顾列表:增 append insert extend 删 remove pop clear del 改 li[索引] = '被修改的内容' li[切片]:'被修改的内容' 查 for循环 r ...

  10. 撰写POPUSH需求文档

    不当家不知柴米贵,撰写了正规的软件需求文档才知道软件工程的复杂性 感谢@洪宇@王需@江林楠下午的加班加点,五个人正闷在406B奋斗中,加油!