把式子展开以后会发现,可以用线段树维护$x,y,x*y,x^2$分别的区间和

然后操作有区间加和区间修改

这个pushdown的时候,如果改和加的标记同时存在,那一定是先改再加,要不然加的标记已经被清掉了

所以在pushdown的时候,如果有改的标记,要把孩子的加的标记清掉

然后注意细节就行了(用*传数组 然后在函数里改了的话 它真的会改的 怎么就意识不到呢...)

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=1e5+,inf=1e9; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Node{
double x,y,xy,x2;
int l,r;
Node(double a=,double b=,double c=,double d=,int e=,int f=){
x=a,y=b,xy=c,x2=d,l=e,r=f;
}
}tr[maxn*];
double laz[maxn*][];
int ch[maxn*][],pct,X[maxn],Y[maxn];
int N,M; Node operator + (Node a,Node b){
Node p;
p.l=a.l,p.r=b.r;
p.x=a.x+b.x,p.y=a.y+b.y;
p.xy=a.xy+b.xy,p.x2=a.x2+b.x2;
return p;
} inline void deal(Node &p,double *v){
int r=p.r,l=p.l;
if(v[]!=-inf){
p.x=p.y=1ll*(p.r+p.l)*(p.r-p.l+)/;
p.xy=p.x2=(1ll*r*(r+)*(*r+))/-(1ll*(l-)*l*(*l-))/;
v[]+=v[],v[]+=v[];
} p.x2+=(p.r-p.l+)*v[]*v[]+*v[]*p.x;
p.xy+=v[]*p.y+v[]*p.x+(p.r-p.l+)*v[]*v[];
p.x+=(p.r-p.l+)*v[],p.y+=(p.r-p.l+)*v[];
if(v[]!=-inf) v[]-=v[],v[]-=v[];
} inline void pushdown(int p){
// return;
if(!ch[p][]) return;
if(laz[p][]==&&laz[p][]==&&laz[p][]==-inf) return;
int a=ch[p][],b=ch[p][];
if(laz[p][]!=-inf){
laz[a][]=laz[a][]=laz[b][]=laz[b][]=;
laz[a][]=laz[p][],laz[a][]=laz[p][];
laz[b][]=laz[p][],laz[b][]=laz[p][];
}
laz[a][]+=laz[p][],laz[a][]+=laz[p][];
laz[b][]+=laz[p][],laz[b][]+=laz[p][]; deal(tr[a],laz[p]);
deal(tr[b],laz[p]);
laz[p][]=laz[p][]=,laz[p][]=laz[p][]=-inf;
} void build(int &p,int l,int r){
p=++pct;
laz[p][]=laz[p][]=-inf;
if(l==r){
tr[p]=Node(X[l],Y[l],1ll*X[l]*Y[l],1ll*X[l]*X[l],l,r);
}else{
int m=l+r>>;
build(ch[p][],l,m);
build(ch[p][],m+,r);
tr[p]=tr[ch[p][]]+tr[ch[p][]];
}
} void query(int p,int l,int r,int x,int y,Node &q){
pushdown(p);
if(x<=l&&r<=y){
if(!q.l) q=tr[p];
else q=q+tr[p];
}else{
int m=l+r>>;
if(x<=m) query(ch[p][],l,m,x,y,q);
if(y>=m+) query(ch[p][],m+,r,x,y,q);
}
} void add(int p,int l,int r,int x,int y,int s,int t){
pushdown(p);
if(x<=l&&r<=y){
double v[];
v[]=s,v[]=t;v[]=v[]=-inf;
deal(tr[p],v);
laz[p][]+=s,laz[p][]+=t;
pushdown(p);
}else{
int m=l+r>>;
if(x<=m) add(ch[p][],l,m,x,y,s,t);
if(y>=m+) add(ch[p][],m+,r,x,y,s,t);
tr[p]=tr[ch[p][]]+tr[ch[p][]];
}
} void change(int p,int l,int r,int x,int y,int s,int t){
if(x<=l&&r<=y){
double v[];
v[]=v[]=,v[]=s,v[]=t;
deal(tr[p],v);
laz[p][]=laz[p][]=,laz[p][]=s,laz[p][]=t;
pushdown(p);
}else{
pushdown(p);
int m=l+r>>;
if(x<=m) change(ch[p][],l,m,x,y,s,t);
if(y>=m+) change(ch[p][],m+,r,x,y,s,t);
tr[p]=tr[ch[p][]]+tr[ch[p][]];
}
} int main(){
int i,j,k;
N=rd(),M=rd();
for(i=;i<=N;i++) X[i]=rd();
for(i=;i<=N;i++) Y[i]=rd();
build(i,,N);
for(i=;i<=M;i++){
int a=rd(),b=rd(),c=rd();
if(a==){
Node p;
query(,,N,b,c,p);
double xb=p.x/(c-b+),yb=p.y/(c-b+);
double ans=;
ans=p.xy-xb*p.y-yb*p.x+xb*yb*(c-b+);
ans/=p.x2-*xb*p.x+xb*xb*(c-b+);
printf("%.10lf\n",ans);
}else{
int d=rd(),e=rd();
if(a==){
add(,,N,b,c,d,e);
}else if(a==){
change(,,N,b,c,d,e);
}
}
}
return ;
}

luogu3707 相关分析 (线段树)的更多相关文章

  1. [Sdoi2017]相关分析 [线段树]

    [Sdoi2017]相关分析 题意:沙茶线段树 md其实我考场上还剩一个多小时写了40分 其实当时写正解也可以吧1h也就写完了不过还要拍一下 正解代码比40分短2333 #include <io ...

  2. 【BZOJ4821】【SDOI2017】相关分析 [线段树]

    相关分析 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Frank对天文学非常感兴趣,他经 ...

  3. 【BZOJ4821】[Sdoi2017]相关分析 线段树

    [BZOJ4821][Sdoi2017]相关分析 Description Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. ...

  4. BZOJ 4821 [Sdoi2017]相关分析 ——线段树

    打开题面,看到许多$\sum$ woc,好神啊,SDOI好强啊 然后展开之后,woc,SDOI好弱啊,怎么T3出个线段树裸题啊. 最后写代码的时候,woc,SDOI怎么出个这么码农的题啊,怎么调啊. ...

  5. 洛谷P3707 [SDOI2017]相关分析(线段树)

    题目描述 Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. Frank不仅喜欢观测,还喜欢分析观测到的数据.他经常分析两个 ...

  6. BZOJ 4821: [Sdoi2017]相关分析 线段树 + 卡精

    考试的时候切掉了,然而卡精 + 有一个地方忘开 $long long$,完美挂掉 $50$pts. 把式子化简一下,然后直接拿线段树来维护即可. Code: // luogu-judger-enabl ...

  7. BZOJ.4821.[SDOI2017]相关分析(线段树)

    BZOJ LOJ 洛谷 恶心的拆式子..然后就是要维护\(\sum x_i,\ \sum y_i,\ \sum x_iy_i,\ \sum x_i^2\). 操作三可以看成初始化一遍,然后同操作二. ...

  8. SDOI2017相关分析 线段树

    题目 https://loj.ac/problem/2005 思路 \[ \sum_{L}^{R}{(x_i-x)^{2}} \] \[ \sum_{L}^{R}{(x_i^2-2*x_i*x+x^{ ...

  9. LOJ #2005. 「SDOI2017」相关分析 线段树维护回归直线方程

    题目描述 \(Frank\) 对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. \(Frank\) 不仅喜欢观测,还喜欢分析观测到的 ...

随机推荐

  1. ES6入门之let、cont

    一.前提 解决ES5中只有全局作用域和函数作用域,没有块级作用域而带来的不合理的场景. let 基本用法 用法和var 一样,只是let声明的变量只有在let命令所在的代码块有效 { let a = ...

  2. TRIO-basic指令--九九乘法表demo

    在路上闲的没事,想到之前自己用别的语言实现乘法口诀表,于是来了兴趣用TRIO-basic试一下,挺简单的一段代码,大家看看就好. ' TRIO-basic '实现乘法口诀表 定义两个整型的局部变量 D ...

  3. Centos下DNS+NamedManager高可用部署方案完整记录

    之前说到了NamedManager单机版的配置,下面说下DNS+NamedManager双机高可用的配置方案: 1)机器环境 主机名 ip地址 dns01.kevin.cn 192.168.10.20 ...

  4. php安全配置记录和常见错误梳理

    通常部署完php环境后会进行一些安全设置,除了熟悉各种php漏洞外,还可以通过配置php.ini来加固PHP的运行环境,PHP官方也曾经多次修改php.ini的默认设置.下面对php.ini中一些安全 ...

  5. php类之clone 克隆

    对象也能被“克隆” 在php5中,对象的传递方式默认为引用传递,如果我们想要在内存中生成两个一样的对象或者创建一个对象的副本,这时可以使用“克隆”. 通过 clone 克隆一个对象 对象的复制是通过关 ...

  6. 基本的排序算法C++实现(插入排序,选择排序,冒泡排序,归并排序,快速排序,最大堆排序,希尔排序)

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/8529525.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  7. javaScript常用API合集

    节点 1.1 节点属性 Node.nodeName   //返回节点名称,只读 Node.nodeType   //返回节点类型的常数值,只读 Node.nodeValue  //返回Text或Com ...

  8. 第三个Sprint冲刺第七天(燃尽图)

  9. Daily Scrum - 12/15-21

    Meeting Minutes 没有什么实质性进展: 添加/完成了一个新feature,即使用非线性的函数作为速度条的设定: 等待与travis开会,讨论下一步的feature = =: 阅读code ...

  10. Tomcat启动错误一例org.apache.catalina.core.StandardContext resources Start Error starting static Resources

    org.apache.catalina.core.StandardContext resources Start Error starting static Resources 引发原因:Eclips ...