把式子展开以后会发现,可以用线段树维护$x,y,x*y,x^2$分别的区间和

然后操作有区间加和区间修改

这个pushdown的时候,如果改和加的标记同时存在,那一定是先改再加,要不然加的标记已经被清掉了

所以在pushdown的时候,如果有改的标记,要把孩子的加的标记清掉

然后注意细节就行了(用*传数组 然后在函数里改了的话 它真的会改的 怎么就意识不到呢...)

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=1e5+,inf=1e9; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Node{
double x,y,xy,x2;
int l,r;
Node(double a=,double b=,double c=,double d=,int e=,int f=){
x=a,y=b,xy=c,x2=d,l=e,r=f;
}
}tr[maxn*];
double laz[maxn*][];
int ch[maxn*][],pct,X[maxn],Y[maxn];
int N,M; Node operator + (Node a,Node b){
Node p;
p.l=a.l,p.r=b.r;
p.x=a.x+b.x,p.y=a.y+b.y;
p.xy=a.xy+b.xy,p.x2=a.x2+b.x2;
return p;
} inline void deal(Node &p,double *v){
int r=p.r,l=p.l;
if(v[]!=-inf){
p.x=p.y=1ll*(p.r+p.l)*(p.r-p.l+)/;
p.xy=p.x2=(1ll*r*(r+)*(*r+))/-(1ll*(l-)*l*(*l-))/;
v[]+=v[],v[]+=v[];
} p.x2+=(p.r-p.l+)*v[]*v[]+*v[]*p.x;
p.xy+=v[]*p.y+v[]*p.x+(p.r-p.l+)*v[]*v[];
p.x+=(p.r-p.l+)*v[],p.y+=(p.r-p.l+)*v[];
if(v[]!=-inf) v[]-=v[],v[]-=v[];
} inline void pushdown(int p){
// return;
if(!ch[p][]) return;
if(laz[p][]==&&laz[p][]==&&laz[p][]==-inf) return;
int a=ch[p][],b=ch[p][];
if(laz[p][]!=-inf){
laz[a][]=laz[a][]=laz[b][]=laz[b][]=;
laz[a][]=laz[p][],laz[a][]=laz[p][];
laz[b][]=laz[p][],laz[b][]=laz[p][];
}
laz[a][]+=laz[p][],laz[a][]+=laz[p][];
laz[b][]+=laz[p][],laz[b][]+=laz[p][]; deal(tr[a],laz[p]);
deal(tr[b],laz[p]);
laz[p][]=laz[p][]=,laz[p][]=laz[p][]=-inf;
} void build(int &p,int l,int r){
p=++pct;
laz[p][]=laz[p][]=-inf;
if(l==r){
tr[p]=Node(X[l],Y[l],1ll*X[l]*Y[l],1ll*X[l]*X[l],l,r);
}else{
int m=l+r>>;
build(ch[p][],l,m);
build(ch[p][],m+,r);
tr[p]=tr[ch[p][]]+tr[ch[p][]];
}
} void query(int p,int l,int r,int x,int y,Node &q){
pushdown(p);
if(x<=l&&r<=y){
if(!q.l) q=tr[p];
else q=q+tr[p];
}else{
int m=l+r>>;
if(x<=m) query(ch[p][],l,m,x,y,q);
if(y>=m+) query(ch[p][],m+,r,x,y,q);
}
} void add(int p,int l,int r,int x,int y,int s,int t){
pushdown(p);
if(x<=l&&r<=y){
double v[];
v[]=s,v[]=t;v[]=v[]=-inf;
deal(tr[p],v);
laz[p][]+=s,laz[p][]+=t;
pushdown(p);
}else{
int m=l+r>>;
if(x<=m) add(ch[p][],l,m,x,y,s,t);
if(y>=m+) add(ch[p][],m+,r,x,y,s,t);
tr[p]=tr[ch[p][]]+tr[ch[p][]];
}
} void change(int p,int l,int r,int x,int y,int s,int t){
if(x<=l&&r<=y){
double v[];
v[]=v[]=,v[]=s,v[]=t;
deal(tr[p],v);
laz[p][]=laz[p][]=,laz[p][]=s,laz[p][]=t;
pushdown(p);
}else{
pushdown(p);
int m=l+r>>;
if(x<=m) change(ch[p][],l,m,x,y,s,t);
if(y>=m+) change(ch[p][],m+,r,x,y,s,t);
tr[p]=tr[ch[p][]]+tr[ch[p][]];
}
} int main(){
int i,j,k;
N=rd(),M=rd();
for(i=;i<=N;i++) X[i]=rd();
for(i=;i<=N;i++) Y[i]=rd();
build(i,,N);
for(i=;i<=M;i++){
int a=rd(),b=rd(),c=rd();
if(a==){
Node p;
query(,,N,b,c,p);
double xb=p.x/(c-b+),yb=p.y/(c-b+);
double ans=;
ans=p.xy-xb*p.y-yb*p.x+xb*yb*(c-b+);
ans/=p.x2-*xb*p.x+xb*xb*(c-b+);
printf("%.10lf\n",ans);
}else{
int d=rd(),e=rd();
if(a==){
add(,,N,b,c,d,e);
}else if(a==){
change(,,N,b,c,d,e);
}
}
}
return ;
}

luogu3707 相关分析 (线段树)的更多相关文章

  1. [Sdoi2017]相关分析 [线段树]

    [Sdoi2017]相关分析 题意:沙茶线段树 md其实我考场上还剩一个多小时写了40分 其实当时写正解也可以吧1h也就写完了不过还要拍一下 正解代码比40分短2333 #include <io ...

  2. 【BZOJ4821】【SDOI2017】相关分析 [线段树]

    相关分析 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Frank对天文学非常感兴趣,他经 ...

  3. 【BZOJ4821】[Sdoi2017]相关分析 线段树

    [BZOJ4821][Sdoi2017]相关分析 Description Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. ...

  4. BZOJ 4821 [Sdoi2017]相关分析 ——线段树

    打开题面,看到许多$\sum$ woc,好神啊,SDOI好强啊 然后展开之后,woc,SDOI好弱啊,怎么T3出个线段树裸题啊. 最后写代码的时候,woc,SDOI怎么出个这么码农的题啊,怎么调啊. ...

  5. 洛谷P3707 [SDOI2017]相关分析(线段树)

    题目描述 Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. Frank不仅喜欢观测,还喜欢分析观测到的数据.他经常分析两个 ...

  6. BZOJ 4821: [Sdoi2017]相关分析 线段树 + 卡精

    考试的时候切掉了,然而卡精 + 有一个地方忘开 $long long$,完美挂掉 $50$pts. 把式子化简一下,然后直接拿线段树来维护即可. Code: // luogu-judger-enabl ...

  7. BZOJ.4821.[SDOI2017]相关分析(线段树)

    BZOJ LOJ 洛谷 恶心的拆式子..然后就是要维护\(\sum x_i,\ \sum y_i,\ \sum x_iy_i,\ \sum x_i^2\). 操作三可以看成初始化一遍,然后同操作二. ...

  8. SDOI2017相关分析 线段树

    题目 https://loj.ac/problem/2005 思路 \[ \sum_{L}^{R}{(x_i-x)^{2}} \] \[ \sum_{L}^{R}{(x_i^2-2*x_i*x+x^{ ...

  9. LOJ #2005. 「SDOI2017」相关分析 线段树维护回归直线方程

    题目描述 \(Frank\) 对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. \(Frank\) 不仅喜欢观测,还喜欢分析观测到的 ...

随机推荐

  1. Codeforces 987E Petr and Permutations(数组的置换与复原 、结论)

    题目连接: Petr and Permutations 题意:给出一个1到n的序列,Petr打乱了3n次,Um_nik打乱了7n+1次,现在给出被打乱后的序列,求是谁打乱的. 题解:因为给出了一个3* ...

  2. REST-framework快速构建API--源码解析

    一.APIView 通过APIView实现API的过程如下: urls.py url(r'^books/$', views.BookView.as_view(),name="books&qu ...

  3. Azure Load Balancer : 简介

    Azure 提供的负载均衡服务叫 Load Balancer,它工作在 ISO 七层模型的第四层,通过分析 IP 层及传输层(TCP/UDP)的流量实现基于 "IP + 端口" 的 ...

  4. Linux下开源邮件系统Postfix+Extmail+Extman环境部署记录

    一.基础知识梳理MUA (Mail User Agent) MUA 既是"邮件使用者代理人",因为除非你可以直接利用类似 telnet 之类的软件登入邮件主机来主动发出信件,否则您 ...

  5. nginx应用总结(1)-- 基础知识和应用配置梳理

    在linux系统下使用nginx作为web应用服务,用来提升网站访问速度的经验已五年多了,今天在此对nginx的使用做一简单总结. 一.nginx服务简介Nginx是一个高性能的HTTP和反向代理服务 ...

  6. Redis主从复制原理总结

    和Mysql主从复制的原因一样,Redis虽然读取写入的速度都特别快,但是也会产生读压力特别大的情况.为了分担读压力,Redis支持主从复制,Redis的主从结构可以采用一主多从或者级联结构,Redi ...

  7. 个人阅读作业2—《No Silver Bullet: Essence and Accidents of Software Engineering》读后感

    在进行了一次结对编程.一次团队编程和一次个人编程项目后,读了<No Silver Bullet: Essence and Accidents of Software Engineering> ...

  8. Linux内核分析第四章读书笔记

    第四章 进程调度 进程调度程序:确保进程能有效工作的一个内核子程序 决定将哪个进程投入运行,何时运行已经运行多长时间 进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子系统 原则:只 ...

  9. suqid透明正向代理

    如果想实现透明正向代理,则必需将用户的网关IP指向 Squid 服务器,而此后便无需再修改浏览器选项 在命令行 <菜单+R> 中使用 ping  命令: ping  www.baidu.c ...

  10. how-is-docker-different-from-a-normal-virtual-machine[Docker与VirtualMachine的区别]

    https://stackoverflow.com/questions/16047306/how-is-docker-different-from-a-normal-virtual-machine 被 ...