题目描述

给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0。
请找到最长的一段连续区间,使得该区间内所有数字之和不超过p。

输入

第一行包含三个整数n,p,d(1<=d<=n<=2000000,0<=p<=10^16)。
第二行包含n个正整数,依次表示序列中每个数w[i](1<=w[i]<=10^9)。

输出

包含一行一个正整数,即修改后能找到的最长的符合条件的区间的长度。

样例输入

9 7 2
3 4 1 9 4 1 7 1 3

样例输出

5

提示

将第4个和第5个数修改为0,然后可以选出区间[2,6],总和为4+1+0+0+1=6。

首先想一下暴力,枚举修改区间及选择区间更新答案。

优化一下,发现对于固定修改区间,选择区间具有单调性,因此可以单调队列维护。

再进一步想一想能发现修改区间也具有单调性,如果前面的修改区间比后面修改区间的区间和小,那么前面那个区间就没用了。

所以单调队列维护修改区间,双指针扫一下选择区间即可。

#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,d,x;
int l,r,k;
int ans;
long long p;
long long s[2000010];
long long f[2000010];
int q[2000010];
int main()
{
//freopen("magic.in","r",stdin);
//freopen("magic.out","w",stdout);
scanf("%d%lld%d",&n,&p,&d);
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
s[i]=s[i-1]+x;
}
for(int i=1;i+d-1<=n;i++)
{
f[i]=s[i+d-1]-s[i-1];
}
l=1;
r=1;
k=1;
for(int i=d;i<=n;i++)
{
while(l<=r&&f[i-d+1]>=f[q[r]])
{
r--;
}
q[++r]=i-d+1;
while(s[i]-s[k-1]-f[q[l]]>p)
{
k++;
while(l<r&&q[l]<k)
{
l++;
}
}
if(q[l]>=k)
{
ans=max(ans,i-k+1);
}
}
printf("%d",ans);
}

BZOJ4385[POI2015]Wilcze doły——单调队列+双指针的更多相关文章

  1. [bzoj4385][POI2015]Wilcze doły_单调队列

    Wilcze doły bzoj-4385 POI-2015 题目大意:给定一个n个数的序列,可以将连续的长度不超过d的区间内所有数变成0,求最长的一段区间,使得区间和不超过p. 注释:$1\le n ...

  2. 【BZOJ4385】[POI2015]Wilcze doły 单调栈+双指针法

    [BZOJ4385][POI2015]Wilcze doły Description 给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0.请找到最长的一段 ...

  3. BZOJ4385 : [POI2015]Wilcze doły

    求出前缀和$s$,设$f[i]=s[i+d-1]-s[i-1]$. 从左到右枚举的右端点$i$,左端点$j$满足单调性,若$s[i]-s[j-1]-\max(区间内最大的f)\leq p$,则可行. ...

  4. BZOJ 4385: [POI2015]Wilcze doły

    4385: [POI2015]Wilcze doły Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 648  Solved: 263[Submit][ ...

  5. [POI2015]Wilcze doły

    [POI2015]Wilcze doły 题目大意: 给定一个长度为\(n(n\le2\times10^6)\)的数列\(A(1\le A_i\le10^9)\),可以从中选取不超过\(d\)个连续数 ...

  6. 【bzoj4385】[POI2015]Wilcze doły

    单调队列扫描,记录当前区间长度为d的一段的和的最大值,和当前区间和. #include<algorithm> #include<iostream> #include<cs ...

  7. BZOJ_4698_Sdoi2008 Sandy的卡片_后缀数组+单调队列+双指针

    BZOJ_4698_Sdoi2008 Sandy的卡片_后缀数组 Description Sandy和Sue的热衷于收集干脆面中的卡片.然而,Sue收集卡片是因为卡片上漂亮的人物形象,而Sandy则是 ...

  8. 【POJ3162】Walking Race 树形dp+单调队列+双指针

    题目大意:给定一棵 N 个节点的无根树,边有边权,现生成一个序列 d,d[i] 表示 i 号节点到树上其他节点距离的最大值.给定一个 m,求 d 序列中最大值和最小值之差不超过 m 的最长连续段的长度 ...

  9. bzoj4385 & POJ2015 Wilcze doły

    Description 给定一个长度为n的序列,你有一次机会选中一段连续的长度不超过d的区间,将里面所有数字全部修改为0.请找到最长的一段连续区间,使得该区间内所有数字之和不超过p. Input 第一 ...

随机推荐

  1. Linux下对inode和块的理解

    基本概念 首先讲下inode和块的基本概念.在Linux系统中,文件由元数据和数据块组成.数据块就是多个连续性的扇区(sector),扇区是文件存储的最小单位(每个512字节).块(block)的大小 ...

  2. 动手动脑(lesson 3)

    一· 答:本质上一样,但在内存分配时有区别.如下图: 二· 程序运行结果截图: 答案截图: 三· 四· 答:构造函数与参数个数不匹配. 五· 运行结果截图: 总结:所有类的变量都默认初始化为null, ...

  3. JSON构造/解析(by C)---cJSON和json-c

    背景 JSON即JavaScript Object Notation,是一种轻量级的数据交换格式. JSON建构于两种结构: "名称/值"对的集合(A collection of ...

  4. HTTP-从输入url到请求回数据发生了什么

  5. 腾讯云 ubuntu 上tomcat加载项目很慢

    问题原因 随机数引起线程阻塞. tomcat不断启动,关闭, 启动关闭.几次后会出现卡死状况.需很久才能加载完成 阿里云同样配置,同样系统,则很难出现卡死状况.  即使出现过几十秒后也会释放出来. 而 ...

  6. [Oracle]跨DBLINK的JOIN查询的数据库缓存问题15783452141

    客户问到跨DBLINK,结合本地表和远端表的时候,数据在哪一边 的 Data Buffer 缓存. 测试的结果是:本地表在本地缓存,远端表在远端缓存. ####Testcase-0929-10 本地数 ...

  7. springboot+websocket 归纳收集

    websocket是h5后的技术,主要实现是一个长连接跟tomcat的comet技术差不多,但websocket是基于web协议的,有更广泛的支持.当然,在处理高并发的情况下,可以结合tomcat的a ...

  8. 微服务之Sping Cloud

    版本说明 Finchley SR2 价值简要 微服务之间是松耦合,跨不同业务部门,提供非常充分的灵活性,加快项目开发完成效率,方便组件化独立可扩展性及复用. 微服务应用结构表现 组件简要 1. Eur ...

  9. 从Stampery到Chronicled,区块链公证业务的实践

    Stampery就是这样一家利用比特币区块链技术代替公证人的创业公司,能为所有的敏感文件提供具有法律约束力的证明.可以用Stampery证明任何文件,它能很好地保护知识产权,证明遗嘱.宣誓.合同.家庭 ...

  10. 语音笔记:CTC

    CTC全称,Connectionist temporal classification,可以理解为基于神经网络的时序类分类.语音识别中声学模型的训练属于监督学习,需要知道每一帧对应的label才能进行 ...