KNN简介

KNN(k-NearestNeighbor)算法的思想总结一下:就是在数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为:

1.计算测试数据与各个训练数据之间的距离,选用欧式距离,计算每个点到数据集(训练集)的所有距离,

distance=((x1-x2)**2+(y1-y2)**2)**0.5

2.按照距离的递增关系进行排序,使用argsort(distances.argsort())函数,返回数据集从小到大排列的数据下表,
3.选取距离最小的K个点,与输入k值有关,使用for函数遍历k
4.确定前K个点所在类别的出现频率,class_count[label]=class_count.get(label,0)+1

5.返回前K个点中出现频率最高的类别作为测试数据的预测分类,sorted_class=sorted(class_count.items(),key=operator.itemgetter(1),reverse=True),sorted_class[0][0]。

代码如下:我们把收入工资和年龄作为数据集,进行判别某个年龄和对应收入,有没有资格谈恋爱!

 #!/usr/bin/python
# -*- coding:<utf-8> - import numpy as np
import operator def createDateset():
group=np.array([[5000,25],[2200,32],[7000,32],[26000,29],[20000,35]])
labels=('没有资格谈恋爱','有资格谈恋爱','没有资格谈恋爱','有资格谈恋爱','有资格谈恋爱')
return group,labels def classfy(input,dataSet,labels,k): datasize=dataSet.shape[0] #计算数组集的行数,numpy中shape[0]返回数组的行数,shape[1]返回列数
diffdata=np.tile(input,(datasize,1))-dataSet#np.tile(input,(datasize,1)),对测试数据进行横向复制,使其拥有与其数据集一样的维度
squrdata=diffdata**2#计算相减后的平方,欧式距离,distance=((x1-x2)**2+(y1-y2)**2)**0.5
sum_squr_data=squrdata.sum(axis=1)
distances=sum_squr_data**0#.欧式距离:distance=((x1-x2)**2+(y1-y2)**2)**0.5
print('测试的数据距离数据集的距离分别是:',distances) sorted_distance=distances.argsort()
print('距离从小到大的下标为:',sorted_distance) class_count={}
for i in range (k):
label=labels[sorted_distance[i]]
class_count[label]=class_count.get(label,0)+1#a[b]=a.get(b,0)+1,对字典a赋值,当在字典a中找到
#key为b的键值的时候,取1,找不到的时候取0并加1,即等号坐标为key,右边为value
print('class_count:',class_count)
sorted_class=sorted(class_count.items(),key=operator.itemgetter(1),reverse=True)##key=operator.itemgetter(1)根据字典的值进行排序
#key=operator.itemgetter(0)根据字典的键进行排序
print('sorted_class:',sorted_class)
return sorted_class[0][0] if __name__ == '__main__':
group,labels=createDateset()
test=(6000,36)
test_class=classfy(test,group,labels,5)
print(test_class)
#运行结果如下:
测试的数据距离数据集的距离分别是: [1 1 1 1 1]
距离从小到大的下标为: [0 1 2 3 4]
class_count: {'没有资格谈恋爱': 1}
class_count: {'没有资格谈恋爱': 1, '有资格谈恋爱': 1}
class_count: {'没有资格谈恋爱': 2, '有资格谈恋爱': 1}
class_count: {'没有资格谈恋爱': 2, '有资格谈恋爱': 2}
class_count: {'没有资格谈恋爱': 2, '有资格谈恋爱': 3}
sorted_class: [('有资格谈恋爱', 3), ('没有资格谈恋爱', 2)]
有资格谈恋爱 Process finished with exit code 0

KNN算法的优点:

1.KNN理论简单,容易实现,简单,有效。

2、KNN是一种在线技术,新数据可以直接加入数据集而不必进行重新训练

KNN算法缺点:

1.KNN算法是懒散学习方法(lazy learning,基本上不学习),一些积极学习的算法要快很多。

2.对于样本容量大的数据集计算量比较大。

3.样本不平衡时,预测偏差比较大。如:某一类的样本比较少,而其它类样本比较多。

4.KNN每一次分类都会重新进行一次全局运算。

5.k值大小的选择。

机器学习算法(KNN)的更多相关文章

  1. Python机器学习算法 — KNN分类

    KNN简介 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.KNN分类算法属于监督学习. 最简单最初级的分类器是将全部的训练 ...

  2. 机器学习算法-K-NN的学习 /ML 算法 (K-NEAREST NEIGHBORS ALGORITHM TUTORIAL)

    1为什么我们需要KNN 现在为止,我们都知道机器学习模型可以做出预测通过学习以往可以获得的数据. 因为KNN基于特征相似性,所以我们可以使用KNN分类器做分类. 2KNN是什么? KNN K-近邻,是 ...

  3. 机器学习算法·KNN

    机器学习算法应用·KNN算法 一.问题描述 验证码目前在互联网上非常常见,从学校的教务系统到12306购票系统,充当着防火墙的功能.但是随着OCR技术的发展,验证码暴露出的安全问题越来越严峻.目前对验 ...

  4. 机器学习算法——kNN

    顶级数据挖掘会议ICDM于2006年12月评选出了数据挖掘领域的十大经典算法,kNN便是其中一个. kNN算法的思想是:在训练集中选取与输入数据最近的k个邻居,统计k个邻居中出现次数最多的类别,以此作 ...

  5. 机器学习算法——kNN(k-近邻算法)

    算法概述 通过测量不同特征值之间的距离进行 [分类] 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围: 数值型 和 标称型 . 算法流程 数据 样本数 ...

  6. 机器学习算法K-NN的一个使用实例:预测一个人是否患有糖尿病 (KNN-Predict whether a person will have diabetes or not )

    学习中...不断更新. 在糖尿病人的数据库中有几列是不能为0的 比如葡萄糖 胰岛素 身体指数和皮肤厚度.所以在数据预处理阶段需要对这些列的数据进行替换. remeber we did 12 minus ...

  7. 【机器学习】kNN

    机器学习算法--kNN 目录 机器学习算法--kNN 1. 算法原理 2. 算法实现 2.1 kd-tree构造 2.2 kd-tree查询 2.3 kNN算法实现 3. 算法测试 Ref 1. 算法 ...

  8. JavaScript机器学习之KNN算法

    译者按: 机器学习原来很简单啊,不妨动手试试! 原文: Machine Learning with JavaScript : Part 2 译者: Fundebug 为了保证可读性,本文采用意译而非直 ...

  9. 机器学习:k-NN算法(也叫k近邻算法)

    一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集 ...

随机推荐

  1. python第五十二课--自定义异常类

    myexception.py ''' 实现自定义异常类: ''' class MyException(Exception): def __init__(self,msg): super().__ini ...

  2. zip 的 压缩与解压

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/xiananliu/article/details/23993481 zip格式是开源的相比rar格式 ...

  3. hdu3400(三分套三分)

    题意:平面上两条线段 AB,CD. A到B的速度v1,C到D的速度v2,其它地方的速度V3. 求A到D的最短时间. 解法:三分嵌套三分.首先假设AB上的点确定后.确定CD的点的确定应该是符合三分性质的 ...

  4. 【转】MySQL理解索引、添加索引的原则

    索引用于快速找出在某个列中有一特定值的行.不使用索引,MySQL必须从第1条记录开始然后读完整个表直到找出相关的行,还需要考虑每次读入数据页的IO开销.而如果采取索引,则可以根据索引指向的页以及记录在 ...

  5. 【转】Pandas的Apply函数——Pandas中最好用的函数

    转自:https://blog.csdn.net/qq_19528953/article/details/79348929 import pandas as pd import datetime #用 ...

  6. centos 6.5 gogs迁移外部仓库报错

    安装gogs git软件后,使用迁移外部仓库功能,提示“你没有获得导入本地仓库的权限”,发现是因为使用的ssh的链接进行导入 目前gogs咱不支持,随后使用github的https链接导入,依然报错 ...

  7. 单调队列&单调栈

    单调队列 例题: Poj 2823给定一个数列,从左至右输出每个长度为m的数列段内的最小数和最大数.数列长度:N<=106,m<=N 对于单调队列,我们这样子来定义: 1.维护区间最值 2 ...

  8. <<linux device driver,third edition>> Chapter 3:Char Drivers

    The Internal Representation of Device Numbers Within the kernel,the dev_t type(defined in linux/type ...

  9. Euler:欧拉函数&素数筛

    一.欧拉函数 欧拉函数是小于x的整数中与x互质的数的个数,一般用φ(x)表示. 通式:   其中p1, p2……pn为x的所有质因数,x是不为0的整数. 比如x=12,拆成质因数为12=2*2*3, ...

  10. 置顶博客一览表($My~Top~List$)

    咳,主要是因为我觉得置顶博客太多了让人很晕233 以下是(伪)置顶的博客: 笙上月 \(\color{red}{Link}\) 笔下梅 \(\color{red}{Link}\) 老年\(OIer\) ...