【洛谷P4934】 礼物,拓扑排序
题目大意:给你$n$个不重复的数,其值域为$[0,2^k)$,问你至少需要将这$n$个数拆成多少个集合,使得它们互相不是对方的子集,并输出方案。
数据范围:$n≤10^6$,$k≤20$。
$MD$我场上都想了啥。。。。
我们显然有一种$O(3^k)$的做法,对于数字$x$,我们枚举其子集,设当前枚举到的子集为$u$,我们连一条$u->x$的边,然后跑一个拓扑排序,即可确定至少需要划分为多少个集合(我场上根本没在想拓扑排序。。。。)
然后,这个显然会$TLE+MLE$。
然后我们发现,若存在$u,v,w,$满足$u$是$v$的子集,$v$是$w$的子集,那么这种情况下,从$w$连边向$u$,其实是多余的。故对于数字$x$,我们只需要连接$u->x$,其中$u$^$x=2^p$。那么边的数量就成功降低至$2^k$。
时间复杂度:$O(nk)$。
#include<bits/stdc++.h>
#define M 1100005
using namespace std;
struct edge{int u,next;}e[M*]={}; int head[M]={},use=;
void add(int x,int y){use++;e[use].u=y;e[use].next=head[x];head[x]=use;}
int n,k,id[M]={};
queue<int> q; int dfn[M]={},in[M]={};
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
int x; scanf("%d",&x);
id[x]=i;
}
for(int i=;i<(<<k);i++){
for(int j=;j<k;j++)
if((i&(<<j))==) add(i,i^(<<j)),in[i^(<<j)]++;
}
q.push();
while(!q.empty()){
int u=q.front(); q.pop();
if(id[u]) dfn[u]++;
for(int i=head[u];i;i=e[i].next){
in[e[i].u]--;
dfn[e[i].u]=max(dfn[e[i].u],dfn[u]);
if(in[e[i].u]==) q.push(e[i].u);
}
}
cout<<<<endl;
cout<<dfn[(<<k)-]<<endl; for(int i=;i<=dfn[(<<k)-];i++){
int res=;
for(int j=;j<(<<k);j++) res+=(dfn[j]==i&&id[j]);
printf("%d ",res);
for(int j=;j<(<<k);j++) if(dfn[j]==i&&id[j]) printf("%d ",j);
printf("\n");
}
}
【洛谷P4934】 礼物,拓扑排序的更多相关文章
- 洛谷P1073 Tarjan + 拓扑排序 // 构造分层图
https://www.luogu.org/problemnew/show/P1073 C国有 n n个大城市和 mm 条道路,每条道路连接这 nn个城市中的某两个城市.任意两个城市之间最多只有一条道 ...
- 洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈)
洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1311990 原题地址:洛谷P1155 双栈排序 ...
- 【洛谷 P4934】 礼物 (位运算+DP)
题目链接 位运算+\(DP\)=状压\(DP\)?(雾 \(a\&b>=min(a,b)\)在集合的意义上就是\(a\subseteq b\) 所以对每个数的子集向子集连一条边,然后答案 ...
- [NOIP2008] 提高组 洛谷P1155 双栈排序
题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...
- 洛谷.3809.[模板]后缀排序(后缀数组 倍增) & 学习笔记
题目链接 //输出ht见UOJ.35 #include<cstdio> #include<cstring> #include<algorithm> const in ...
- 洛谷P1155 双栈排序
这题什么毒瘤......之前看一直没思路,然后心说写个暴搜看能有多少分,然后就A了??! 题意:给你一个n排列,求它们能不能通过双栈来完成排序.如果能输出最小字典序方案. [update]这里面加了一 ...
- 洛谷P4165 [SCOI2007]组队(排序 堆)
题意 题目链接 Sol 跟我一起大喊:n方过百万,暴力踩标算! 一个很显然的思路是枚举\(H, S\)的最小值算,复杂度\(O(n^3)\) 我们可以把式子整理一下,变成 \[A H_i + B S_ ...
- 洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告
P2824 [HEOI2016/TJOI2016]排序 题意: 有一个长度为\(n\)的1-n的排列\(m\)次操作 \((0,l,r)\)表示序列从\(l\)到\(r\)降序 \((1,l,r)\) ...
- 【洛谷 P3165】 [CQOI2014]排序机械臂 (Splay)
题目链接 debug了\(N\)天没debug出来,原来是找后继的时候没有pushdown... 众所周知,,Splay中每个编号对应的节点的值是永远不会变的,因为所有旋转.翻转操作改变的都是父节点和 ...
随机推荐
- Confluence无法打开编辑器,一直在转圈
在管理员界面中,将Collaborative editing 设置为Off 或者 Limited . 快速找到该界面的方式是,在搜索框里搜索 “Collaborative editing”. 折腾了几 ...
- C语言程序设计50例(一)(经典收藏)
[程序1]题目:有1.2.3.4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?1.程序分析:可填在百位.十位.个位的数字都是1.2.3.4.组成所有的排列后再去 掉不满足条件的排列. # ...
- 20155202 2016-2017-2 《Java程序设计》第6周学习总结
20155202 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 输入输出 数据从来源取出:输入串流 java.io.InputStream 写入目的的:输出 ...
- Activity生命流程
做Android的同学说起 Activity,那绝对是熟悉的不能再熟悉了,但是越熟悉的东西往往越陌生.我们真的了解她吗?她是我们所认识的那样吗?或许是,或许不是!了解与否, 让我们往下看.首先借And ...
- listview 异步加载
http://www.iteye.com/topic/685986 ListView异步加载图片是非常实用的方法,凡是是要通过网络获取图片资源一般使用这种方法比较好,用户体验好,下面就说实现方法,先贴 ...
- Codeforces777A Shell Game 2017-05-04 17:11 59人阅读 评论(0) 收藏
A. Shell Game time limit per test 0.5 seconds memory limit per test 256 megabytes input standard inp ...
- SSH框架中配置log4j的方法
SSH框架中使用log4j的方便之处 1. 动态的改变记录级别和策略,即修改log4j.properties,不需要重启Web应用,这需要在web.xml中设置一下.2. 把log文件定在 /WEB- ...
- 关于单例的DCL方式分析
public class Singleton { /** * 单例对象实例 */ private volatile static Singleton instance = null; public s ...
- ios开发 ad hoc怎么用
简单的说就是这样 ad hoc 方式是苹果用来给未上线的app做测试用的,首先你要在苹果开发平台上申请一个ad hoc的证书,再在profile中生成一个ad hoc 的profile文件(只需要在生 ...
- MySQLdb & pymsql
python有两个模块可以连接和操作mysql数据库,分别是MySQLdb和pymysql,python3建议使用pymysql MySQLdb安装 pip install mysql-python ...