解题:POI 2007 Driving Exam
有点意思的题
从一个位置$i$出发可以到达每一个位置即是从$1,n$出发可以到达$i$。然后有了一个做法:把图上下反转后建反图,这样就可以求从一个点$i$到达左右两侧的花费$dp[i][0/1]$了,这个花费就是当前总长度-到这个点为止的LIS长度(左右各求一遍)。因为还要考虑边的这个问题,可以用一个权值树状数组维护前/后缀最大值来实现。可以发现合法点的左侧都能到达左端,右侧都能到达右端,所以其实我们找的是一段区间,即找一段区间$(l,r)$使得$dp[l][1]+dp[r][0]<=k$,发现$dp$数组两维都是单调的,直接双指针即可。
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
struct a{int h,v;}; vector<a> m1[N],m2[N];
int n,m,d,k,t1,t2,typ,len,ans,p1,p2;
int tr[N],dp[N][];
void maxx(int pos,int num)
{
while(pos<=m)
tr[pos]=max(tr[pos],num),pos+=pos&-pos;
}
int query(int pos)
{
int ret=;
while(pos)
ret=max(ret,tr[pos]),pos-=pos&-pos;
return ret;
}
int main ()
{
scanf("%d%d%d%d",&n,&m,&d,&k),m++;
for(int i=;i<=d;i++)
{
scanf("%d%d%d",&t1,&t2,&typ);
if(typ) m1[t1+].push_back((a){m-t2,});
else m2[t1].push_back((a){m-t2,});
}
for(int i=;i<=n;i++)
{
int siz=m1[i].size();
for(int j=;j<siz;j++)
{
m1[i][j].v=query(m1[i][j].h)+;
len=max(len,m1[i][j].v);
}
dp[i][]=i-len-;
for(int j=;j<siz;j++)
maxx(m1[i][j].h,m1[i][j].v);
}
len=,memset(tr,,sizeof tr);
for(int i=n;i;i--)
{
int siz=m2[i].size();
for(int j=;j<siz;j++)
{
m2[i][j].v=query(m2[i][j].h)+;
len=max(len,m2[i][j].v);
}
dp[i][]=n-len-i;
for(int j=;j<siz;j++)
maxx(m2[i][j].h,m2[i][j].v);
}
len=,p1=p2=;
while(p1<=n)
{
while(p2<=n&&dp[p1][]+dp[p2][]<=k) p2++;
ans=max(ans,p2-p1); if(!dp[p1][]&&!dp[p1][]) len++; p1++;
}
printf("%d",ans-len);
return ;
}
解题:POI 2007 Driving Exam的更多相关文章
- 解题:POI 2007 Tourist Attractions
题面 事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸) 先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态 ...
- 解题:POI 2007 Weights
题面 这是个$O(nlog^2$ $n)$的解法,因为蒟蒻博主没有看懂$O(nlog$ $n)$的更优秀的解法 显然从小到大装砝码是最优的方法,又显然从大到小装容器不会使得答案变劣,还显然砝码数具有单 ...
- [POI 2007]ZAP-Queries
Description Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency) ...
- 解题:SCOI 2007 蜥蜴
题面 拆点跑最大流 所有能跑出去的点连向汇点,容量为inf 原点连向所有初始有蜥蜴的点,容量为1 每根柱子拆成两个点“入口”和“出口”,入口向出口连容量为高度的边,出口向别的有高度的柱子的入口连容量为 ...
- [POI 2007] 办公楼
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1098 [算法] 显然 , 答案为补图的连通分量个数 用链表优化BFS , 时间复杂度 ...
- [POI 2007] Zap
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1101 [算法] 首先 , 问题可以转化为求GCD(x,y) = 1,x <= ...
- BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...
- [POI 2007] 堆积木
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1109 [算法] DP [代码] #include<bits/stdc++.h& ...
- 【POI 2007】 山峰和山谷
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1102 [算法] 广度优先搜索 [代码] #include<bits/stdc+ ...
随机推荐
- 基于C#的机器学习--目录
转载请注明出处:https://www.cnblogs.com/wangzhenyao1994/p/10223666.html 文章发表的另一个地址:https://blog.csdn.net/wyz ...
- AlexNet——ImageNet Classification with Deep Convolutional Neural Networks
1. 摘要 本文的模型采用了 5 层的卷积,一些层后面还紧跟着最大池化层,和 3 层的全连接,最后是一个 1000 维的 softmax 来进行分类. 为了减少过拟合,在全连接层采取了 dropout ...
- 20162328蔡文琛 week05 大二
20162328 2017-2018-1 <程序设计与数据结构>第5周学习总结 教材学习内容总结 集合是收集元素并组织其他对象的对象. 集合中的元素一般由加入集合的次序或元素之间的某些固有 ...
- selenium之鼠标事件
1.鼠标悬停火狐版本51,selenium版本3ActionChains(driver).move_to_element(above).perform()执行代码时,报错:selenium.commo ...
- Internet History, Technology and Security (Week⑨)
Week ⑨ We are now on the second to last week of the class and finishing up our look at Internet Secu ...
- java 对象和基本数据类型 “==”区别
“==”比较的是地址,牢记.1.对象.integer 是对象 Integer i1 = 20; Integer i2 = 20 ; System.out.println(i1 == i2); // t ...
- 3、第一个Python程序
现在,了解了如何启动和退出Python的交互式环境,我们就可以正式开始编写Python代码了. 在写代码之前,请千万不要用“复制”-“粘贴”把代码从页面粘贴到你自己的电脑上.写程序也讲究一个感觉,你需 ...
- angularJS1笔记-(12)-自定义指令(compile/link)
index.html: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...
- teamcity和jmeter结合进行接口自动化测试
(1)从teamcity官网下载jmeter插件:https://teamcity.jetbrains.com/repository/download/TeamCityPluginsByJetBrai ...
- java 自定义异常的回顾
一.异常的分类: 1.编译时异常:编译时被检测的异常 (throw后,方法有能力处理就try-catch处理,没能力处理就必须throws).编译不通过,检查语法(其实就是throw和throws的配 ...