sicily 1176. Two Ends (Top-down 动态规划+记忆化搜索 v.s. Bottom-up 动态规划)
Description
In the two-player game "Two Ends", an even number of cards is laid out in a row. On each card, face up, is written a positive integer. Players take turns removing a card from either end of the row and placing the card in their pile. The player whose cards add up to the highest number wins the game. Now one strategy is to simply pick the card at the end that is the largest -- we'll call this the greedy strategy. However, this is not always optimal, as the following example shows: (The first player would win if she would first pick the 3 instead of the 4.)
3 2 10 4
You are to determine exactly how bad the greedy strategy is for different games when the second player uses it but the first player is free to use any strategy she wishes.
Input
There will be multiple test cases. Each test case will be contained on one line. Each line will start with an even integer n followed by n positive integers. A value of n = 0 indicates end of input. You may assume that n is no more than 1000. Furthermore, you may assume that the sum of the numbers in the list does not exceed 1,000,000.
Output
For each test case you should print one line of output of the form:
In game m, the greedy strategy might lose by as many as p points.
where m is the number of the game (starting at game 1) and p is the maximum possible difference between the first player's score and second player's score when the second player uses the greedy strategy. When employing the greedy strategy, always take the larger end. If there is a tie, remove the left end.
题意:给定一个数列,两人轮流取数,只能从两端取,第一个取的人可以用任何策略,第二个贪心,问结束时第一个人会赢多少分。
思路就是Top-Down的动态规划+记忆化搜索或者Bottom-Up的动态规划,,复杂度O(n2)。由于有比较多的判断就不写状态转移方程了,具体见代码和注释。
Notes:
Top-Down DP + Memorization 与 Bottom-Up DP 的区别
两种写法:
1. Top-Down:
//#define JDEBUG #include<cstdio>
#include<cstring>
#include<algorithm> int cards[];
int state[][]; /**
* Top-Down DP. Get the scores won by a in [l, r]
*
* @param l start of the interval
* @param r end of the interval
* @return the scores won by a in [l, r]
*/
int dp(int l, int r) {
// reach the end
if (l > r)
return ;
// one card
if (l == r)
return cards[l];
// [Memoization] searched
if (state[l][r] != -)
return state[l][r]; int takeLeft = , takeRight = ; // check what happens if a takes left
// cards[r] > cards[l+1], so b would take right
// narrowdown to [l+1, r-1]
if (cards[r] > cards[l + ]) {
takeLeft = dp(l + , r - ) + cards[l];
} else { // cards[r] <= cards[l+1], so b would take next left
// narrow down to [l+2, r]
takeLeft = dp(l + , r) + cards[l];
} // check what happens if a takes right
// cards[r-1] > cards[l], so b would take next right
// narrow down to [l, r-2]
if (cards[r - ] > cards[l]) {
takeRight = dp(l, r - ) + cards[r];
} else { // cards[r-1] <= cards[l], so b would take left
// narrow down to [l+1, r-1]
takeRight = dp(l + , r - ) + cards[r];
} // return the best outcome
return state[l][r] = (takeLeft > takeRight) ? takeLeft : takeRight;
} int main(void) {
#ifdef JDEBUG
freopen("1176.in", "r", stdin);
freopen("1176.out", "w", stdout);
#endif int n = ;
int game = ;
while(scanf("%d", &n) && n != ) {
// initialization
int sum = ;
memset(cards, -, sizeof(cards));
memset(state, -, sizeof(state)); for(int i = ; i < n; i++) {
scanf("%d", &cards[i]);
sum += cards[i];
} int scoreOfA = dp(, n - );
int scoreOfB = sum - scoreOfA;
printf("In game %d, the greedy strategy might lose by as many as %d points.\n",
game++, scoreOfA - scoreOfB);
}
}
2. Bottom-Up
//#define JDEBUG
#include<cstdio>
#include<cstdlib>
#include<cstring> int cards[];
int state[][]; /**
* Bottom up DP.
*
* @param n number of cards
* @return score by which b will lose
*/
int dp(int n) {
// base case: in [i, i+1], a would take the larger one,
// so b lose by abs(cards[i] - cards[i + 1])
for (int i = ; i < n - ; i++) {
state[i][i + ] = abs(cards[i] - cards[i + ]);
} // dp starts from [l, l+3] since [l, l+1] is known
// iterate: when [l, l+intvl] are left
for (int intvl = ; intvl < n; intvl++) {
for (int l = ; l < n - intvl; l++) {
int r = l + intvl;
int takeLeft = , takeRight = ; // check what happens if a takes left
// cards[r] > cards[l+1], so b would take right
if (cards[r] > cards[l + ]) {
takeLeft = state[l + ][r - ] + cards[l] - cards[r];
} else { // cards[r] <= cards[l+1], so b would take next left
takeLeft = state[l + ][r] + cards[l] - cards[l + ];
} // check what happens if a takes right
// cards[r-1] > cards[l], so b would take next right
if (cards[r - ] > cards[l]) {
takeRight = state[l][r - ] + cards[r] - cards[r - ];
} else { // cards[r-1] <= cards[l], so b would take left
takeRight = state[l + ][r - ] + cards[r] - cards[l];
} // use the one with the best outcome
state[l][r] = takeLeft > takeRight ? takeLeft : takeRight;
}
} return state[][n - ];
} int main(void) {
#ifdef JDEBUG
freopen("1176.in", "r", stdin);
freopen("1176.out", "w", stdout);
#endif
int n = ;
int game = ; while (scanf("%d", &n) && n != ) {
// store the card numbers
for (int i = ; i < n; i++) {
scanf("%d", &cards[i]);
} memset(state, , sizeof(state));
printf("In game %d, the greedy strategy might lose by as many as %d points.\n",
game++, dp(n));
} return ;
}
sicily 1176. Two Ends (Top-down 动态规划+记忆化搜索 v.s. Bottom-up 动态规划)的更多相关文章
- UVA_437_The_Tower_of_the_Babylon_(DAG上动态规划/记忆化搜索)
描述 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- Codevs_1017_乘积最大_(划分型动态规划/记忆化搜索)
描述 http://codevs.cn/problem/1017/ 给出一个n位数,在数字中间添加k个乘号,使得最终的乘积最大. 1017 乘积最大 2000年NOIP全国联赛普及组NOIP全国联赛提 ...
- [NOIP2017] 逛公园 (最短路,动态规划&记忆化搜索)
题目链接 Solution 我只会60分暴力... 正解是 DP. 状态定义: \(f[i][j]\) 代表 \(1\) 到 \(i\) 比最短路长 \(j\) 的方案数. 那么很显然最后答案也就是 ...
- Poj-P1088题解【动态规划/记忆化搜索】
本文为原创,转载请注明:http://www.cnblogs.com/kylewilson/ 题目出处: http://poj.org/problem?id=1088 题目描述: 区域由一个二维数组给 ...
- 滑雪---poj1088(动态规划+记忆化搜索)
题目链接:http://poj.org/problem?id=1088 有两种方法 一是按数值大小进行排序,然后按从小到大进行dp即可: #include <iostream> #incl ...
- 记忆化搜索 codevs 2241 排序二叉树
codevs 2241 排序二叉树 ★ 输入文件:bstree.in 输出文件:bstree.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] 一个边长为n的正三 ...
- 再谈记忆化搜索 HDU-1078
最近做DP题目,发现无论是LCS,还是有些题目涉及将动态规划的路径打印出来,而且有时候还要按格式输出,这个时候,记忆化搜索显得尤其重要,确实,记忆化搜索使用优化版本的动态规划,用起来思路清晰,非常方便 ...
- poj1163The Triangle(动态规划,记忆化搜索)
7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calc ...
- HDU 1176 免费馅饼(记忆化搜索)
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
随机推荐
- tp 事务处理
tp的事务开启是非常简单的, 只需要M()->startTrans();//开启事务,M()可以是M('xxx') $m->rollback();//事务回滚 $m->commit( ...
- 【转载】C#, VB.NET如何将Excel转换为PDF
在日常工作中,我们经常需要把Excel文档转换为PDF文档.你是否在苦恼如何以C#, VB.NET编程的方式将Excel文档转换为PDF文档呢?你是否查阅了许多资料,运用了大量的代码,但转换后的效果依 ...
- const引用与非const引用
void print1(int a) { cout<<a<<endl; } void print2(const int& a) { cout<<a<& ...
- 51nod 1181 质数中的质数
1181 质数中的质数(质数筛法) 题目来源: Sgu 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 如果一个质数,在质数列表中的编号也是质数,那么就称 ...
- 翻译:GLSL的顶点位移贴图
翻译:GLSL的顶点位移贴图 翻译自: Vertex Displacement Mapping using GLSL 译者: FreeBlues 说明: 之所以选择这篇文档, 是因为现在但凡提到位移贴 ...
- angularJS $http $q $promise
一天早晨,爹对儿子说:“宝儿,出去看看天气如何!” 每个星期天的早晨,爹都叫小宝拿着超级望远镜去家附近最高的山头上看看天气走势如何,小宝说没问题,我们可以认为小宝在离开家的时候给了他爹一个promis ...
- Concat层解析
Concat层的作用就是将两个及以上的特征图按照在channel或num维度上进行拼接,并没有eltwise层的运算操作,举个例子,如果说是在channel维度上进行拼接conv_9和deconv_9 ...
- HDU 1242 Rescue (广搜)
题目链接 Problem Description Angel was caught by the MOLIGPY! He was put in prison by Moligpy. The priso ...
- 【CC2530强化实训03】定时器间隔定时实现按键长按与短按
[CC2530强化实训03]定时器间隔定时实现按键长按与短按 [题目要求] 虽然用普通的延时函数能够实现按键长按与短按的判别,但是在实际的工程应用和项目开发中并不好用也不灵活.更多得是借助定时器的间隔 ...
- Windows无法访问局域网内共享文件夹[0x800704cf,0x80070035]解决方案
Windows7系统突然无法访问访问其他windows机器的共享文件夹,出现0x800704cf或者0x80070035错误: 解决方案如下两张图,配置与下面两张图为准,即可解决: 1:window+ ...