sicily 1176. Two Ends (Top-down 动态规划+记忆化搜索 v.s. Bottom-up 动态规划)
Description
In the two-player game "Two Ends", an even number of cards is laid out in a row. On each card, face up, is written a positive integer. Players take turns removing a card from either end of the row and placing the card in their pile. The player whose cards add up to the highest number wins the game. Now one strategy is to simply pick the card at the end that is the largest -- we'll call this the greedy strategy. However, this is not always optimal, as the following example shows: (The first player would win if she would first pick the 3 instead of the 4.)
3 2 10 4
You are to determine exactly how bad the greedy strategy is for different games when the second player uses it but the first player is free to use any strategy she wishes.
Input
There will be multiple test cases. Each test case will be contained on one line. Each line will start with an even integer n followed by n positive integers. A value of n = 0 indicates end of input. You may assume that n is no more than 1000. Furthermore, you may assume that the sum of the numbers in the list does not exceed 1,000,000.
Output
For each test case you should print one line of output of the form:
In game m, the greedy strategy might lose by as many as p points.
where m is the number of the game (starting at game 1) and p is the maximum possible difference between the first player's score and second player's score when the second player uses the greedy strategy. When employing the greedy strategy, always take the larger end. If there is a tie, remove the left end.
题意:给定一个数列,两人轮流取数,只能从两端取,第一个取的人可以用任何策略,第二个贪心,问结束时第一个人会赢多少分。
思路就是Top-Down的动态规划+记忆化搜索或者Bottom-Up的动态规划,,复杂度O(n2)。由于有比较多的判断就不写状态转移方程了,具体见代码和注释。
Notes:
Top-Down DP + Memorization 与 Bottom-Up DP 的区别
两种写法:
1. Top-Down:
//#define JDEBUG #include<cstdio>
#include<cstring>
#include<algorithm> int cards[];
int state[][]; /**
* Top-Down DP. Get the scores won by a in [l, r]
*
* @param l start of the interval
* @param r end of the interval
* @return the scores won by a in [l, r]
*/
int dp(int l, int r) {
// reach the end
if (l > r)
return ;
// one card
if (l == r)
return cards[l];
// [Memoization] searched
if (state[l][r] != -)
return state[l][r]; int takeLeft = , takeRight = ; // check what happens if a takes left
// cards[r] > cards[l+1], so b would take right
// narrowdown to [l+1, r-1]
if (cards[r] > cards[l + ]) {
takeLeft = dp(l + , r - ) + cards[l];
} else { // cards[r] <= cards[l+1], so b would take next left
// narrow down to [l+2, r]
takeLeft = dp(l + , r) + cards[l];
} // check what happens if a takes right
// cards[r-1] > cards[l], so b would take next right
// narrow down to [l, r-2]
if (cards[r - ] > cards[l]) {
takeRight = dp(l, r - ) + cards[r];
} else { // cards[r-1] <= cards[l], so b would take left
// narrow down to [l+1, r-1]
takeRight = dp(l + , r - ) + cards[r];
} // return the best outcome
return state[l][r] = (takeLeft > takeRight) ? takeLeft : takeRight;
} int main(void) {
#ifdef JDEBUG
freopen("1176.in", "r", stdin);
freopen("1176.out", "w", stdout);
#endif int n = ;
int game = ;
while(scanf("%d", &n) && n != ) {
// initialization
int sum = ;
memset(cards, -, sizeof(cards));
memset(state, -, sizeof(state)); for(int i = ; i < n; i++) {
scanf("%d", &cards[i]);
sum += cards[i];
} int scoreOfA = dp(, n - );
int scoreOfB = sum - scoreOfA;
printf("In game %d, the greedy strategy might lose by as many as %d points.\n",
game++, scoreOfA - scoreOfB);
}
}
2. Bottom-Up
//#define JDEBUG
#include<cstdio>
#include<cstdlib>
#include<cstring> int cards[];
int state[][]; /**
* Bottom up DP.
*
* @param n number of cards
* @return score by which b will lose
*/
int dp(int n) {
// base case: in [i, i+1], a would take the larger one,
// so b lose by abs(cards[i] - cards[i + 1])
for (int i = ; i < n - ; i++) {
state[i][i + ] = abs(cards[i] - cards[i + ]);
} // dp starts from [l, l+3] since [l, l+1] is known
// iterate: when [l, l+intvl] are left
for (int intvl = ; intvl < n; intvl++) {
for (int l = ; l < n - intvl; l++) {
int r = l + intvl;
int takeLeft = , takeRight = ; // check what happens if a takes left
// cards[r] > cards[l+1], so b would take right
if (cards[r] > cards[l + ]) {
takeLeft = state[l + ][r - ] + cards[l] - cards[r];
} else { // cards[r] <= cards[l+1], so b would take next left
takeLeft = state[l + ][r] + cards[l] - cards[l + ];
} // check what happens if a takes right
// cards[r-1] > cards[l], so b would take next right
if (cards[r - ] > cards[l]) {
takeRight = state[l][r - ] + cards[r] - cards[r - ];
} else { // cards[r-1] <= cards[l], so b would take left
takeRight = state[l + ][r - ] + cards[r] - cards[l];
} // use the one with the best outcome
state[l][r] = takeLeft > takeRight ? takeLeft : takeRight;
}
} return state[][n - ];
} int main(void) {
#ifdef JDEBUG
freopen("1176.in", "r", stdin);
freopen("1176.out", "w", stdout);
#endif
int n = ;
int game = ; while (scanf("%d", &n) && n != ) {
// store the card numbers
for (int i = ; i < n; i++) {
scanf("%d", &cards[i]);
} memset(state, , sizeof(state));
printf("In game %d, the greedy strategy might lose by as many as %d points.\n",
game++, dp(n));
} return ;
}
sicily 1176. Two Ends (Top-down 动态规划+记忆化搜索 v.s. Bottom-up 动态规划)的更多相关文章
- UVA_437_The_Tower_of_the_Babylon_(DAG上动态规划/记忆化搜索)
描述 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- Codevs_1017_乘积最大_(划分型动态规划/记忆化搜索)
描述 http://codevs.cn/problem/1017/ 给出一个n位数,在数字中间添加k个乘号,使得最终的乘积最大. 1017 乘积最大 2000年NOIP全国联赛普及组NOIP全国联赛提 ...
- [NOIP2017] 逛公园 (最短路,动态规划&记忆化搜索)
题目链接 Solution 我只会60分暴力... 正解是 DP. 状态定义: \(f[i][j]\) 代表 \(1\) 到 \(i\) 比最短路长 \(j\) 的方案数. 那么很显然最后答案也就是 ...
- Poj-P1088题解【动态规划/记忆化搜索】
本文为原创,转载请注明:http://www.cnblogs.com/kylewilson/ 题目出处: http://poj.org/problem?id=1088 题目描述: 区域由一个二维数组给 ...
- 滑雪---poj1088(动态规划+记忆化搜索)
题目链接:http://poj.org/problem?id=1088 有两种方法 一是按数值大小进行排序,然后按从小到大进行dp即可: #include <iostream> #incl ...
- 记忆化搜索 codevs 2241 排序二叉树
codevs 2241 排序二叉树 ★ 输入文件:bstree.in 输出文件:bstree.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] 一个边长为n的正三 ...
- 再谈记忆化搜索 HDU-1078
最近做DP题目,发现无论是LCS,还是有些题目涉及将动态规划的路径打印出来,而且有时候还要按格式输出,这个时候,记忆化搜索显得尤其重要,确实,记忆化搜索使用优化版本的动态规划,用起来思路清晰,非常方便 ...
- poj1163The Triangle(动态规划,记忆化搜索)
7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calc ...
- HDU 1176 免费馅饼(记忆化搜索)
免费馅饼 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
随机推荐
- python3 安装MySQLdb及无法打开mysql.h问题解决(win7 )
在Flask中要连接mysql数据库,需要安装flask-mysqldb. pip install flask-mysqldb 用pip安装MySQLdb 中遇到如下问题,折腾半天之久,多方尝试,终搞 ...
- 字典的setdefault() 和get()方法比较
Python 字典 setdefault() 函数 和get() 类似: 如果键存在字典中,返回其value值 如果键不存在字典中,创建键值对.完后,返回值为默认值. 话不多说,上栗子: setdef ...
- python 资产扫描01
本地建立的三个文件: Asset1.txt 用来保存扫描到的资产 Asset2.txt 用来导入给定的资产 Repeat.txt 保存重复的资产 程序的功能: 1.资产扫描,以 位置:资产 格式保存到 ...
- docker中实现服务日志轮转
问题背景 通常我们一个完整的应用镜像有两部分组成,一个是运行时环境,一个是应用程序.我们以php应用为例,一个完整的php应用需要包含openresty + php两个服务来配置运行时环境,然后再加上 ...
- Hadoop基础-Hadoop快照管理
Hadoop基础-Hadoop快照管理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.快照的作用 快照可以迅速对文件(夹)进行备份,不产生新文件,使用差值存储,默认是禁用状态. ...
- json转java对象
用了平台之后很少再接触到java和js的底层代码,前几天远程帮一个萌新远程调试代码,这个萌新按照网上的教程去将json字符转java对象却一直报错.真相是它的json字符串格式不对,他的明明是一个数组 ...
- c# 的一些基本操作或属性
http下载文件,不保存到服务器,直接使用浏览器下载 /// <summary> /// 根据url下载文件 /// </summary> /// <param name ...
- awk例子
ls |awk -F . '{print $1}'|awk -F '-[0-9]' '{print $1}'
- IIS Media Service: Channel 小结
IIS Media Service 对Channel的Schema可以在浏览器中输入http://{0}:{1}/services/smoothstreaming/publishingpoints.i ...
- 学以致用:Python爬取廖大Python教程制作pdf
当我学了廖大的Python教程后,感觉总得做点什么,正好自己想随时查阅,于是就开始有了制作PDF这个想法. 想要把教程变成PDF有三步: 先生成空html,爬取每一篇教程放进一个新生成的div,这样就 ...