Hadoop案例(十)WordCount
WordCount案例
需求1:统计一堆文件中单词出现的个数(WordCount案例)
0)需求:在一堆给定的文本文件中统计输出每一个单词出现的总次数
1)数据准备:Hello.txt
hello world
dog fish
hadoop
spark
hello world
dog fish
hadoop
spark
hello world
dog fish
hadoop
spark
2)分析
按照mapreduce编程规范,分别编写Mapper,Reducer,Driver。


3)编写程序
(1)定义一个mapper类
package com.xyg.wordcount; import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; /**
* KEYIN:默认情况下,是mr框架所读到的一行文本的起始偏移量,Long;
* 在hadoop中有自己的更精简的序列化接口,所以不直接用Long,而是用LongWritable
* VALUEIN:默认情况下,是mr框架所读到的一行文本内容,String;此处用Text
* KEYOUT:是用户自定义逻辑处理完成之后输出数据中的key,在此处是单词,String;此处用Text
* VALUEOUT,是用户自定义逻辑处理完成之后输出数据中的value,在此处是单词次数,Integer,此处用IntWritable
* @author Administrator
*/
public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
/**
* map阶段的业务逻辑就写在自定义的map()方法中
* maptask会对每一行输入数据调用一次我们自定义的map()方法
*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 1 将maptask传给我们的文本内容先转换成String
String line = value.toString(); // 2 根据空格将这一行切分成单词
String[] words = line.split(" "); // 3 将单词输出为<单词,1>
for(String word:words){
// 将单词作为key,将次数1作为value,以便于后续的数据分发,可以根据单词分发,以便于相同单词会到相同的reducetask中
context.write(new Text(word), new IntWritable());
}
}
}
(2)定义一个reducer类
package com.xyg.wordcount; import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; /**
* KEYIN , VALUEIN 对应mapper输出的KEYOUT, VALUEOUT类型
* KEYOUT,VALUEOUT 对应自定义reduce逻辑处理结果的输出数据类型 KEYOUT是单词 VALUEOUT是总次数
*/
public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { /**
* key,是一组相同单词kv对的key
*/
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int count = ; // 1 汇总各个key的个数
for(IntWritable value:values){
count +=value.get();
} // 2输出该key的总次数
context.write(key, new IntWritable(count));
}
}
(3)定义一个主类,用来描述job并提交job
package com.xyg.wordcount; import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /**
* 相当于一个yarn集群的客户端,
* 需要在此封装我们的mr程序相关运行参数,指定jar包
* 最后提交给yarn
* @author Administrator
*/
public class WordcountDriver {
public static void main(String[] args) throws Exception {
// 1 获取配置信息,或者job对象实例
Configuration configuration = new Configuration();
// 8 配置提交到yarn上运行,windows和Linux变量不一致
// configuration.set("mapreduce.framework.name", "yarn");
// configuration.set("yarn.resourcemanager.hostname", "node22");
Job job = Job.getInstance(configuration); // 6 指定本程序的jar包所在的本地路径
// job.setJar("/home/admin/wc.jar");
job.setJarByClass(WordcountDriver.class); // 2 指定本业务job要使用的mapper/Reducer业务类
job.setMapperClass(WordcountMapper.class);
job.setReducerClass(WordcountReducer.class); // 3 指定mapper输出数据的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); // 4 指定最终输出的数据的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); // 5 指定job的输入原始文件所在目录
FileInputFormat.setInputPaths(job, new Path(args[]));
FileOutputFormat.setOutputPath(job, new Path(args[])); // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
// job.submit();
boolean result = job.waitForCompletion(true);
System.exit(result?:);
}
}
4)集群上测试
(1)将程序打成jar包,然后拷贝到hadoop集群中。
(2)启动hadoop集群
(3)执行wordcount程序
[admin@node21 module]$ hadoop jar wc.jar com.xyg.wordcount.WordcountDriver /user/admin/input /user/admin/output
5)本地测试
(1)在windows环境上配置HADOOP_HOME环境变量。
(2)在eclipse上运行程序
(3)注意:如果eclipse打印不出日志,在控制台上只显示
1.log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).
2.log4j:WARN Please initialize the log4j system properly.
3.log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
需要在项目的src目录下,新建一个文件,命名为“log4j.properties”,在文件中填入
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
需求2:把单词按照ASCII码奇偶分区(Partitioner)
0)分析

1)自定义分区
package com.xyg.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner; public class WordCountPartitioner extends Partitioner<Text, IntWritable>{ @Override
public int getPartition(Text key, IntWritable value, int numPartitions) { // 1 获取单词key
String firWord = key.toString().substring(, );
char[] charArray = firWord.toCharArray();
int result = charArray[];
// int result = key.toString().charAt(0); // 2 根据奇数偶数分区
if (result % == ) {
return ;
}else {
return ;
}
}
}
2)在驱动中配置加载分区,设置reducetask个数
job.setPartitionerClass(WordCountPartitioner.class);
job.setNumReduceTasks(2);
需求3:对每一个maptask的输出局部汇总(Combiner)
0)需求:统计过程中对每一个maptask的输出进行局部汇总,以减小网络传输量即采用Combiner功能。

1)数据准备:hello,txt
方案一
1)增加一个WordcountCombiner类继承Reducer
package com.xyg.mr.combiner;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class WordcountCombiner extends Reducer<Text, IntWritable, Text, IntWritable>{ @Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int count = ;
for(IntWritable v :values){
count += v.get();
} context.write(key, new IntWritable(count));
}
}
2)在WordcountDriver驱动类中指定combiner
//9 指定需要使用combiner,以及用哪个类作为combiner的逻辑
job.setCombinerClass(WordcountCombiner.class);
方案二
1)将WordcountReducer作为combiner在WordcountDriver驱动类中指定
//9 指定需要使用combiner,以及用哪个类作为combiner的逻辑
job.setCombinerClass(WordcountReducer.class);
运行程序

需求4:大量小文件的切片优化(CombineTextInputFormat)
0)需求:将输入的大量小文件合并成一个切片统一处理。
1)输入数据:准备5个小文件
2)实现过程
(1)不做任何处理,运行需求1中的wordcount程序,观察切片个数为5

(2)在WordcountDriver中增加如下代码,运行程序,并观察运行的切片个数为1
// 如果不设置InputFormat,它默认用的是TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m
CombineTextInputFormat.setMinInputSplitSize(job, 2097152);// 2m

Hadoop案例(十)WordCount的更多相关文章
- hadoop安装与WordCount例子
1.JDK安装 下载网址: http://www.oracle.com/technetwork/java/javase/downloads/jdk-6u29-download-513648.html ...
- Hadoop(十五)MapReduce程序实例
一.统计好友对数(去重) 1.1.数据准备 joe, jon joe , kia joe, bob joe ,ali kia, joe kia ,jim kia, dee dee ,kia dee, ...
- Hadoop3 在eclipse中访问hadoop并运行WordCount实例
前言: 毕业两年了,之前的工作一直没有接触过大数据的东西,对hadoop等比较陌生,所以最近开始学习了.对于我这样第一次学的人,过程还是充满了很多疑惑和不解的,不过我采取的策略是还是先让环 ...
- Hadoop示例程序WordCount详解及实例(转)
1.图解MapReduce 2.简历过程: Input: Hello World Bye World Hello Hadoop Bye Hadoop Bye Hadoop Hello Hadoop M ...
- Hadoop入门程序WordCount的执行过程
首先编写WordCount.java源文件,分别通过map和reduce方法统计文本中每个单词出现的次数,然后按照字母的顺序排列输出, Map过程首先是多个map并行提取多个句子里面的单词然后分别列出 ...
- Hadoop入门经典:WordCount
转:http://blog.csdn.net/jediael_lu/article/details/38705371 以下程序在hadoop1.2.1上测试成功. 本例先将源代码呈现,然后详细说明执行 ...
- Hadoop示例程序WordCount编译运行
首先确保Hadoop已正确安装及运行. 将WordCount.java拷贝出来 $ cp ./src/examples/org/apache/hadoop/examples/WordCount.jav ...
- 运行第一个Hadoop程序,WordCount
系统: Ubuntu14.04 Hadoop版本: 2.7.2 参照http://www.cnblogs.com/taichu/p/5264185.html中的分享,来学习运行第一个hadoop程序. ...
- Hadoop入门实例——WordCount统计单词
首先要说明的是运行Hadoop需要jdk1.6或以上版本,如果你还没有搭建好Hadoop集群,请参考我的另一篇文章: Linux环境搭建Hadoop伪分布模式 马上进入正题. 1.启动Hadoop集群 ...
随机推荐
- 关于RESTful的理解
如何更好的理解RESTful? (转自https://sanwen8.cn/p/54czrEO.html) 在测试开发中,我们经常接触到API,在调用API时候特别是第三方API时候,我们常常陷入以下 ...
- OpenStack 认证服务 KeyStone部署(三)
Keystone 介绍 Keystone作用: 用户与认证:用户权限与用户行为跟踪: 服务目录:提供一个服务目录,包括所有服务项和相关Api的断点 SOA相关知识 Keystone主要两大功能用户认证 ...
- day12 继承
设计原则:开闭原则:对于拓展open,对于修改close. 类与类的关系:1.is a(继承关系) 2.has a(组合关系) 继承的优点:1.代码的可重用性 2.父类的属性和方法用于子类 3.子类可 ...
- linux服务器上没有jar命令
在linux服务器上用jar命令解压jar包时,提示找不到jar命令. 但是用java -version查看jdk版本,又可以显示出jdk版本. echo $JAVA_HOME查看环境变量路径,找不到 ...
- 悬浮按钮css
.floating-button { color: #fff; position: absolute; right: 16px; bottom: 88px; width: 56px; height: ...
- NYOJ 数独 DFS
数独 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 数独是一种运用纸.笔进行演算的逻辑游戏.玩家需要根据9×9盘面上的已知数字,推理出所有剩余空格的数字,并满足每一 ...
- 蓝桥杯 算法提高 学霸的迷宫 经典BFS问题
算法提高 学霸的迷宫 时间限制:1.0s 内存限制:256.0MB 问题描述 学霸抢走了大家的作业,班长为了帮同学们找回作业,决定去找学霸决斗.但学霸为了不要别人打扰,住在一个城 ...
- NGINX+TOMCAT实现反向代理
环境说明 NGINX: 192.168.10.10 TOMCAT: 192.168.10.11 NGINX部分 [root@nginx ~]# wget http://nginx.org/downlo ...
- negativeView 的使用
参考链接:http://blog.csdn.net/u012702547/article/details/51253222 1.一般来讲,是配合drawerLayout使用的,在xml文件中声明,其中 ...
- 《PHP和MySQL Web开发》读书笔记(下篇)
又与大家见面了.继续<PHP和MySQL Web开发>的总结. Chapter8.设计Web数据库 ·回去看看数据卡那本书吧,这里就不累赘谈这个东西. Chapter9.创建Web数据库 ...