This will be a series of post about Tree model and relevant ensemble method, including but not limited to Random Forest, AdaBoost, Gradient Boosting and xgboost.

So I will start with some basic of Information Theory, which is an importance piece in Tree Model. For relevant topic I highly recommend the tutorial slide from Andrew moore

What is information?

Andrew use communication system to explain information. If we want to transmit a series of 4 characters ( ABCDADCB... ) using binary code ( 0&1 ). How many bits do we need to encode the above character?

The take away here is the more bit you need, the more information it contains.

I think the first encoding coming to your mind will be following:
A = 00, B=01, C =10, D=11. So on average 2 bits needed for each character.

Can we use less bit on average?

Yes! As long as these 4 characters are not uniformally distributed.

Really? Let's formulate the problem using expectation.

\[ E( N ) = \sum_{k \in {A,B,C,D}}{n_k * p(x=k)} \]

where P( x=k ) is the probability of character k in the whole series, and n_k is the number of bits needed to encode k. For example: P( x=A ) = 1/2, P( x=B ) = 1/4, P( x=c ) = 1/8, P( x=D ) = 1/8, can be encoded in following way: A=0, B=01, C=110, D=111.

Basically we can take advantage of the probability and assign shorter encoding to higher probability variable. And now our average bit is 1.75 < 2 !

Do you find any other pattern here?

the number of bits needed for each character is related to itsprobability : bits = -log( p )
Here log has 2 as base, due to binary encoding

We can understand this from 2 angles:

  • How many value can n bits represent? \(2^n\), where each value has probability \(1/2^n\), leading to n = log(1/p).
  • Transmiting 2 characters independently: P( x1=A, x2 =B ) = P( x1=A ) * P( x2=B ), N( x1, x2 ) = N( x1 ) + N( x2 ), where N(x) is the number of bits. So we can see that probability and information is linked via log.

In summary, let's use H( X ) to represent information of X, which is also known as Entropy

when X is discrete, \(H(X) = -\sum_i{p_i \cdot log_2{p_i}}\)
when X is continuous, \(H(X) = -\int_x{p(x) \cdot log_2{p(x)}} dx\)

Deeper Dive into Entropy

1. Intuition of Entropy

I like the way Bishop describe Entropy in the book Pattern Recognition and Machine Learning. Entropy is 'How big the surprise is'. In the following post- tree model, people prefer to use 'impurity'.

Therefore if X is a random variable, then the more spread out X is, the higher Entropy X has. See following:

2. Conditional Entropy

Like the way we learn probability, after learning how to calculate probability and joint probability, we come to conditional probability. Let's discuss conditional Entropy.

H( Y | X ) is given X, how surprising Y is now? If X and Y are independent then H( Y | X ) = H( Y ) (no reduce in surprising). From the relationship between probability and Entropy, we can get following:
\[P(X,Y) = P(Y|X) * P(X)\]

\[H(X,Y) = H(Y|X) + H(X)\]

Above equation can also be proved by entropy. Give it a try! Here let's go through an example from Andrew's tutorial to see what is conditional entropy exactly.

X = college Major, Y = Like 'Gladiator'

X Y
Math YES
History NO
CS YES
Math NO
Math NO
CS YES
History NO
Math YES

Let's compute Entropy using above formula:

H( Y ) = -0.5 * log(0.5) - 0.5 * log(0.5) = 1
H( X ) = -0.5 * log(0.5) - 0.25 * log(0.25) - 0.25 * log(0.25) = 1.5
H( Y | X=Math ) = 1
H( Y | X=CS ) = 0
H( Y | X=History ) = 0
H( Y | X ) = H( Y | X=Math ) * P( X=Math ) + H( Y | X=History ) * P( X=History ) + H( Y | X =CS ) * P( X=CS ) = 0.5

Here we see H( Y | X ) < H( Y ), meaning knowing X helps us know more about Y.

When X is continuous, conditional entropy can be deducted in following way:

we draw ( x , y ) from joint distribution P( x , y ). Given x, the additional information on y becomes -log( P( y | x ) ). Then using entropy formula we get:

\[H(Y|X) = \int_y\int_x{ - p(y,x)\log{p(y|x)} dx dy} =\int_x{H(Y|x)p(x) dx} \]

In summary

When X is discrete, \(H(Y|X) = \sum_j{ H(Y|x=v_j) p(x=v_j)}\)
When X is continuous, \(H(Y|X) = \int_x{ H(Y|x)p(x) dx}\)

3. Information Gain

If we follow above logic, then information Gain is the reduction of surpise in Y given X. So can you guess how IG is defined now?

IG = H( Y ) - H( Y | X )

In our above example IG = 0.5. And Information Gain will be frequently used in the following topic - Tree Model. Because each tree splitting aims at lowering the 'surprising' in Y, where the ideal case is that in each leaf Y is constant. Therefore split with higher information is preferred

So far most of the stuff needed for the Tree Model is covered. If you are still with me, let's talk a about a few other interesting topics related to information theory.

Other Interesting topics

Maximum Entropy

It is easy to know that when Y is constant, we have the smallest entropy, where H( Y ) = 0. No surprise at all!

Then how can we achieve biggest entropy. When Y is discrete, the best guess will be uniform distribution. Knowing nothing about Y brings the biggest surprise. Can we prove this ?

All we need to do is solving a optimization with Lagrange multiplier as following:

\[ H(x) = -\sum_i{p_i \cdot \log_2{p_i}} + \lambda(\sum_i{p_i}-1)\]

Where we can solve hat p are equal for each value, leading to a uniform distribution.

What about Y is continuous? It is still an optimization problem like following:

\[
\begin{align}
&\int { p(x) } =1 \\
&\int { p(x) x} = \mu \\
&\int { p(x) (x-\mu)^2} = \sigma^2
\end{align}
\]
\[ -\int_x{p(x) \cdot \log_2{p(x)}dx} +\lambda_1(\int { p(x) dx} - 1) +\lambda_2(\int { p(x) x dx} - \mu) + \lambda_3(\int { p(x) (x-\mu)^2 dx} - \sigma^2)
\]
We will get Gaussian distribution! You want to give it a try?!

Relative Entropy

Do you still recall our character transmitting example at the very beginning? That we can take advantage of the distribution to use less bit to transmit same amount of information. What if the distribution we use is not exactly the real distribution? Then extra bits will be needed to send same amount of character.

If the real distribution is p(x) and the distribution we use for encoding character is q(x), how many additional bits will be needed? Using what we learned before, we will get following

\[ - \int{p(x)\log q(x) dx } + \int{p(x)\log p(x)dx} \]

Does this looks familiar to you? This is also know as Kullback-Leibler divergence, which is used to measure the difference between 2 distribution.

\[
\begin{align}
KL(p||q) &= \int{ -p(x)logq(x) dx } + \int{p(x)logp(x)dx}\\
& = -\int{ p(x) log(\frac{ q(x) }{ p(x) } })dx
\end{align}
\]

And a few features can be easily understood in terms of information theory:

  • KL( p || q ) >= 0, unless p = q, additional bits are always needed.
  • KL( p || q) != KL( q || p ), because data originally follows 2 different distribution.

To be continued.


reference

  1. Andrew Moore Tutorial http://www.cs.cmu.edu/~./awm/tutorials/dtree.html
  2. Bishop, Pattern Recognition and Machine Learning 2006
  3. T. Hastie, R. Tibshirani and J. Friedman. “Elements of Statistical Learning”, Springer, 2009.

Tree - Information Theory的更多相关文章

  1. CCJ PRML Study Note - Chapter 1.6 : Information Theory

    Chapter 1.6 : Information Theory     Chapter 1.6 : Information Theory Christopher M. Bishop, PRML, C ...

  2. 信息熵 Information Theory

    信息论(Information Theory)是概率论与数理统计的一个分枝.用于信息处理.信息熵.通信系统.数据传输.率失真理论.密码学.信噪比.数据压缩和相关课题.本文主要罗列一些基于熵的概念及其意 ...

  3. information entropy as a measure of the uncertainty in a message while essentially inventing the field of information theory

    https://en.wikipedia.org/wiki/Claude_Shannon In 1948, the promised memorandum appeared as "A Ma ...

  4. Better intuition for information theory

    Better intuition for information theory 2019-12-01 21:21:33 Source: https://www.blackhc.net/blog/201 ...

  5. 信息论 | information theory | 信息度量 | information measures | R代码(一)

    这个时代已经是多学科相互渗透的时代,纯粹的传统学科在没落,新兴的交叉学科在不断兴起. life science neurosciences statistics computer science in ...

  6. 【PRML读书笔记-Chapter1-Introduction】1.6 Information Theory

    熵 给定一个离散变量,我们观察它的每一个取值所包含的信息量的大小,因此,我们用来表示信息量的大小,概率分布为.当p(x)=1时,说明这个事件一定会发生,因此,它带给我的信息为0.(因为一定会发生,毫无 ...

  7. 决策论 | 信息论 | decision theory | information theory

    参考: 模式识别与机器学习(一):概率论.决策论.信息论 Decision Theory - Principles and Approaches 英文图书 What are the best begi ...

  8. The basic concept of information theory.

    Deep Learning中会接触到的关于Info Theory的一些基本概念.

  9. [Basic Information Theory] Writen Notes

随机推荐

  1. Golang - 数据库操作

    1. 下载安装包 go get github.com/Go-SQL-Driver/MySQL go install github.com/Go-SQL-Driver/MySQL 2. 连接池 This ...

  2. springboot不使用内置tomcat启动,用jetty或undertow

    Spring Boot启动程序通常使用Tomcat作为默认的嵌入式服务器.如果需要更改 - 您可以排除Tomcat依赖项并改为包含Jetty或Undertow: jetty配置: <depend ...

  3. 700. Search in a Binary Search Tree

    # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = ...

  4. JIRA使用方法,简易图解

          我们公司要用版本控制(SVN)和过程管理(JIRA)相配合开发软件,所以两个都得用喽!     JIRA是集项目计划.任务分配.需求管理.错误跟踪于一体的商业软件.JIRA创建的问题类型包 ...

  5. zabbix 主动模式和被动模式配置文件对比

    1.主动模式: 在web上看zabbix available 是红色 [root@python ~]# egrep -v '^#|^$' /etc/zabbix/zabbix_agentd.conf ...

  6. BUAA OO 2019 第一单元作业总结

    目录 总 架构 Controller​ Model​ 输入处理 代码静态分析 行数 方法复杂度 UML​ 类图 优点 缺点 坑 输入 非法的空白字符 输入的简并处理 运算 浅拷贝 可变类型与不可变类型 ...

  7. PyCharm编辑HTML文件时输入{%不能自动补全

    在PyCharm编辑HTML文件时输入Django模板语言时,发现录入 {% 不能自动补全. 找了一下,发现 setting 里可以设置 Python Template Languages,选择自己使 ...

  8. 基于BM3803处理器平台的PCI软硬件调试问题汇总(持续更新中)

    一:相关基本配置: FPGA:  XILINX XC5VFX130T-1FFG1738 PCI接口部分使用XILINX提供的pci32_v4_8硬核:PCI控制器由FPGA逻辑实现,主要完成PCI设备 ...

  9. maven中的groupId和artifactId到底指的是什么

    groupid和artifactId被统称为“坐标”是为了保证项目唯一性而提出的,如果你要把你项目弄到maven本地仓库去,你想要找到你的项目就必须根据这两个id去查找. groupId一般分为多个段 ...

  10. react router animation example

    https://github.com/reactjs/react-router/tree/80c71d57c936ed54babdde44309c01f6a4b56b77/examples/anima ...