创建输入

创建intro.csv文件,内容如下

1,101,5.0
1,102,3.0
1,103,2.5 2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0 3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0 4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0 5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

创建推荐程序

由于项目在eclipse下,所以先获取项目额根目录String projectDir = System.getProperty("user.dir");

package com.xxx;

import java.io.File;
import java.io.IOException;
import java.util.List; import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity; /**
* 简单的使用皮尔逊相关系数进行推荐
* @author
*
*/
public class RecommenderIntro {
public static void main(String[] args) throws IOException, TasteException {
String projectDir = System.getProperty("user.dir");
DataModel model = new FileDataModel(new File(projectDir + "/src/main/intro.csv"));
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model); Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);
List<RecommendedItem> recommendedItems = recommender.recommend(1, 1);
for (RecommendedItem recommendedItem : recommendedItems) {
System.out.println(recommendedItem);
}
}
}

推荐程序的步骤是:1,输入user-item矩阵数据 2,选择合适的相似度计算方法(程序中使用的是皮尔逊相关系数)3,构造N最近邻  4,根据邻居产生推荐结果

对应到mahout程序就是上述代码中写的。这个很简单,没毛病,下面是运行结果

Mahout实战---运行第一个推荐引擎的更多相关文章

  1. Mahout实战---评估推荐程序

    推荐程序的一般评测标准有MAE(平均绝对误差),Precision(查准率),recall(查全率) 针对Mahout实战---运行第一个推荐引擎 的推荐程序,将使用上面三个标准分别测量 MAE(平均 ...

  2. 《mahout实战》

    <mahout实战> 基本信息 原书名:Mahout in action 作者: (美)Sean Owen    Robin Anil    Ted Dunning    Ellen Fr ...

  3. [转] 基于 Apache Mahout 构建社会化推荐引擎

    来源:http://www.ibm.com/developerworks/cn/java/j-lo-mahout/index.html 推荐引擎简介 推荐引擎利用特殊的信息过滤(IF,Informat ...

  4. 基于 Apache Mahout 构建社会化推荐引擎

    基于 Apache Mahout 构建社会化推荐引擎 http://www.ibm.com/developerworks/cn/views/java/libraryview.jsp 推荐引擎利用特殊的 ...

  5. 机器学习 101 Mahout 简介 建立一个推荐引擎 使用 Mahout 实现集群 使用 Mahout 实现内容分类 结束语 下载资源

      机器学习 101 Mahout 简介 建立一个推荐引擎 使用 Mahout 实现集群 使用 Mahout 实现内容分类 结束语 下载资源 相关主题   在信息时代,公司和个人的成功越来越依赖于迅速 ...

  6. JVM调优(这里主要是针对优化基于分布式Mahout的推荐引擎)

    优化推荐系统的JVM关键参数 -Xmx 设定Java允许使用的最大堆空间.例如-Xmx512m表示堆空间上限为512MB -server 现代JVM有两个重要标志:-client和-server,分别 ...

  7. 转】用Mahout构建职位推荐引擎

    原博文出自于: http://blog.fens.me/hadoop-mahout-recommend-job/ 感谢! 用Mahout构建职位推荐引擎 Hadoop家族系列文章,主要介绍Hadoop ...

  8. 从源代码剖析Mahout推荐引擎

    转载自:http://blog.fens.me/mahout-recommend-engine/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pi ...

  9. 转】从源代码剖析Mahout推荐引擎

    原博文出自于: http://blog.fens.me/mahout-recommend-engine/ 感谢! 从源代码剖析Mahout推荐引擎 Hadoop家族系列文章,主要介绍Hadoop家族产 ...

随机推荐

  1. 基于Maven的S2SH(Struts2+Spring+Hibernate)框架搭建

    1. 前言 基于Maven的开发方式开发项目已经成为主流.Maven能很好的对项目的层次及依赖关系进行管理.方便的解决大型项目中复杂的依赖关系.S2SH(Struts2+Spring+Hibernat ...

  2. mssql内存表

    自MSSQL2014开始引入内存表. 怎样创建内存表: USE testGO ALTER DATABASE testADD FILEGROUP fg_test CONTAINS MEMORY_OPTI ...

  3. 使用Linq对Hashtable和Dictionary<T,T>查询的效率比较

    近期做版本迭代任务,有一个在店铺头部展示店主所在的城市名称和省份名称的需求,店主信息表中保存了店主所在的城市Id和省份Id,由于原有业务复杂,要尽量减少Sql执行时间,所以不考虑join城市地区详细表 ...

  4. Web app制作细节:web app互动制作技巧

    Google .微软.苹果三大巨头紧锣密鼓地在web app的研发产品领域圈地设岗,并试图建立以自己为中心的”云“服务平台,企图在web app时代到来的时候充当霸主.本文将围绕web app的制作, ...

  5. asp.net core 的用户注册功能——Identity上手

    首先请using这个类库. using Microsoft.AspNetCore.Identity; 这个类库老牛逼了,首先是包含了一个IdentityUser类.我们可以自己写一个User类继承Id ...

  6. 在MUI框架中使用video.js插件,并在暂停的时候利用Asp.net将观看时长保存到sqlserver数据库

    本次保存数据的情况有三种: 在视频播放的时候点击暂停,将本视频的进度保存到数据库 利用mui内部的控件,返回上一页操作时,进行保存 安卓手机触发返回键的时候,进行保存 示例一: 在video标签上面添 ...

  7. pageadmin CMS网站制作教程:模板中的站点数据调用

    pageadmin CMS网站建设教程:模板中的站点数据调用 1.获取当前站点Id,返回int数字 Html.CurrentSiteId() 2.获取当前站点url地址,返回string字符串 Htm ...

  8. Day 27 类的进阶-反射

    11. __new__ 和 __metaclass__ 阅读以下代码: 1 2 3 4 5 6 class Foo(object): def __init__(self): pass obj = Fo ...

  9. ovs 下流表port 1进入,port 1出去

    问题:ovs流量从in_port=1进入,然后从output:1出去,就是说,流量从哪个端口进来,然后从哪个端口出去 流表: ovs-ofctl add-flow br-int in_port=10, ...

  10. Java基础学习篇---------继承

    一.覆写(重写) 1.含义:子类的定义方法.属性和父类的定义方法.属性相同时候 方法名称相同,参数相同以及参数的个数也相同,此时为覆写(重写) 扩充知识点: 覆盖:只有属性名字和方法名字相同,类型.个 ...