hihocoder#1046 K个串 可持久化线段树 + 堆

首先考虑二分,然后发现不可行....
注意到\(k\)十分小,尝试从这里突破
首先用扫描线来处理出以每个节点为右端点的区间的权值和,用可持久化线段树存下来
在所有的右端点相同的区间中,挑一个权值最大的,放入堆中
每次从堆中取出最大元素,然后从被删除的右端点区间中选一个次大的区间
重复\(k\)次即可
复杂度\(O(n \log n + k \log n)\)
一\(A\)开心
#include <map>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 1e5 + 5;
const int eid = 2e7 + 5;
int n, k, id, a[sid], rt[sid];
map <int, int> lst;
ll tag[eid];
int ls[eid], rs[eid];
struct ym {
ll max; int maxp;
friend bool operator < (ym a, ym b)
{ return a.max < b.max; }
} t[eid];
priority_queue < pair <ym, int> > q;
inline int newnode(int pre) {
++ id;
if(pre) t[id] = t[pre]; tag[id] = tag[pre];
ls[id] = ls[pre]; rs[id] = rs[pre];
return id;
}
inline void mdf(int &o, int p, int l, int r, int ml, int mr, ll v) {
o = newnode(p);
if(ml <= l && mr >= r) {
tag[o] += v;
t[o].max += v;
if(l == r) t[o].maxp = l;
return;
}
int mid = (l + r) >> 1;
if(ml <= mid) mdf(ls[o], ls[p], l, mid, ml, mr, v);
if(mr > mid) mdf(rs[o], rs[p], mid + 1, r, ml, mr, v);
t[o] = max(t[ls[o]], t[rs[o]]); t[o].max += tag[o];
}
void wish_upon_to_the_star() {
t[0].max = -1e16;
rep(i, 1, n) {
mdf(rt[i], rt[i - 1], 1, n, i, i, 0);
mdf(rt[i], rt[i], 1, n, lst[a[i]] + 1, i, a[i]);
lst[a[i]] = i;
q.push(make_pair(t[rt[i]], i));
}
ll ans = 0;
while(k --) {
ym tmp = q.top().first;
int id = tmp.maxp, pos = q.top().second;
q.pop(); ans = tmp.max;
mdf(rt[pos], rt[pos], 1, n, id, id, -1e16);
q.push(make_pair(t[rt[pos]], pos));
}
printf("%lld\n", ans);
}
int main() {
n = read(); k = read();
rep(i, 1, n) a[i] = read();
wish_upon_to_the_star();
return 0;
}
hihocoder#1046 K个串 可持久化线段树 + 堆的更多相关文章
- 【BZOJ4504】K个串 可持久化线段树+堆
[BZOJ4504]K个串 Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计 ...
- bzoj 4504: K个串 可持久化线段树+堆
题目: Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一 个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计一次). 兔子们想 ...
- hihocoder#1046: K个串
[传送门] 这种区间内相同数字只能被统计一次/只有区间内数字都不相同才对答案有贡献的题都可以用扫描线扫右端点,表示当前区间右端点为$r$.然后当前线段树/树状数组维护区间左端点为$[1,r)$时对应的 ...
- SPOJ-COT-Count on a tree(树上路径第K小,可持久化线段树)
题意: 求树上A,B两点路径上第K小的数 分析: 同样是可持久化线段树,只是这一次我们用它来维护树上的信息. 我们之前已经知道,可持久化线段树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表 ...
- [POJ2104] 区间第k大数 [区间第k大数,可持久化线段树模板题]
可持久化线段树模板题. #include <iostream> #include <algorithm> #include <cstdio> #include &l ...
- 树上第k小,可持久化线段树+倍增lca
给定一颗树,树的每个结点都有权值, 有q个询问,每个询问是 u v k ,表示u到v路径上第k小的权值是多少. 每个结点所表示的线段树,是父亲结点的线段树添加该结点的权值之后形成的新的线段树 c[ro ...
- [POJ2104] K – th Number (可持久化线段树 主席树)
题目背景 这是个非常经典的主席树入门题--静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个正整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输 ...
- HDU 2665.Kth number-可持久化线段树(无修改区间第K小)模板 (POJ 2104.K-th Number 、洛谷 P3834 【模板】可持久化线段树 1(主席树)只是输入格式不一样,其他几乎都一样的)
Kth number Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- POJ- 2104 hdu 2665 (区间第k小 可持久化线段树)
可持久化线段树 也叫函数式线段树也叫主席树,其主要思想是充分利用历史信息,共用空间 http://blog.sina.com.cn/s/blog_4a0c4e5d0101c8fr.html 这个博客总 ...
随机推荐
- P1879 [USACO06NOV]玉米田Corn Fields (状压dp入门)
题目链接: https://www.luogu.org/problemnew/show/P1879 具体思路: 我们可以先把所有合法的情况枚举出来,然后对第一行判断有多少种情况满足,然后对于剩下的行数 ...
- 在JS数组指定位置插入元素
很多与数组有关的任务听起来很简单,但实际情况并不总是如此,而开发人员在很多时候也用不到他.最近我碰到了这样一个需求: 将一个元素插入到现有数组的特定索引处.听起来很容易和常见,但需要一点时间来研究它. ...
- select()函数用法三之poll函数
poll是Linux中的字符设备驱动中有一个函数,Linux 2.5.44版本后被epoll取代,作用是把当前的文件指针挂到等待队列,和select实现功能差不多. poll()函数:这个函数是某些U ...
- Linux学习笔记-文件处理和权限命令
目录 文件处理命令 touch cat tac more less head tail 链接命令 ln 权限命令 chmod 权限管理命令 chown chgrp umask 文件处理命令 touch ...
- git —— 异常1,index.lock
git提交过程中出现的问题 解决方法:找到 index.lock文件将其删除 一般 index.lock 在.git下面, 有时 .git 是隐藏的,但是无论怎样, 可以通过 everything 找 ...
- MySQL学习笔记:floor、round —— 取整
在MySQL中做数值处理,需要取整或者四舍五入. floor:函数只返回整数部分,小数部分舍弃: round:函数四舍五入: END 2018-05-29 11:31:22
- MySQL学习笔记:时间差
1.MySQL计算同一张表中同一列的时间差,同一个id,有多个时间,求出每个id最早时间和最晚时间之间的差值. 原始表如下: 查询语句: SELECT id, MAX(TIME), MIN(TIME) ...
- js交互
Js和native交互的方法与问题 实现JS和Native交互有两种方式: 第一种:shouldOverrideUrlLoading(WebView view, String url) 通过给WebV ...
- 使用mongo-java-driver-3.0.2连接MongoDB数据库
这里使用的mongodb的java驱动版本是:3.0.2,文件名mongo-java-driver-3.0.2.jar 博客本地下载下载网址(也可以下载其它版本):http://central.ma ...
- Asp.net MVC NPOI导出Excel
public class NpoiMemoryStream : MemoryStream { public NpoiMemoryStream() { AllowClose = true; } publ ...