P4317 花神的数论题

题目背景

众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。

题目描述

话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。 花神的题目是这样的:设 sum(i)表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你 ∏i=1N​sum(i) ,也就是sum(1)∼sum(N)的乘积。

输入输出格式

输入格式:

一个正整数 N。

输出格式:

一个数,答案模 10000007 的值。

输入输出样例

输入样例#1: 复制

3
输出样例#1: 复制

2

说明

对于 100% 的数据,N≤10^15


Solution

数位DP

但是不是直接处理出乘积,而是枚举$i$,处理出有多少个数恰好有$i$个1.

最后直接用快速幂乘起来即可。

Code

#include<bits/stdc++.h>
#define LL long long
#define mod 10000007
using namespace std; LL n; LL mpow(LL a, LL b) {
LL res = ;
for(; b; b >>= , a = a * a % mod)
if(b & ) res = res * a % mod;
return res;
} LL dp[][][][];
int num[];
LL dfs(int dep, int up, int sum, int d) {
if(!dep && sum == d) return dp[dep][up][sum][d] = ;
if(!dep) return dp[dep][up][sum][d] = ;
if(~dp[dep][up][sum][d]) return dp[dep][up][sum][d];
int tot = up ? num[dep] : ;
LL tmp = ;
for(int i = ; i <= tot; i ++)
tmp += dfs(dep - , up && i == tot, sum + i, d);
return dp[dep][up][sum][d] = tmp;
} LL ans[];
LL cot(LL x) {
int t = ;
memset(num, , sizeof(num));
while(x) {
num[++t] = x % ;
x >>= ;
}
for(int i = ; i <= ; i ++) {
memset(dp, -, sizeof(dp));
ans[i] = dfs(t, , , i);
}
LL res = ;
for(int i = ; i <= ; i ++)
res = (res * mpow(i, ans[i])) % mod;
return res;
} int main() {
scanf("%lld", &n);
printf("%lld", cot(n));
return ;
}

【洛谷】4317:花神的数论题【数位DP】的更多相关文章

  1. 洛谷$ P$4317 花神的数论题 数位$dp$

    正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...

  2. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  3. 【BZOJ3209】花神的数论题 数位DP

    [BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...

  4. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

  5. DP,数论————洛谷P4317 花神的数论题(求1~n二进制中1的个数和)

    玄学代码(是洛谷题解里的一位dalao小粉兔写的) //数位DP(二进制)计算出f[i]为恰好有i个的方案数. //答案为∏(i^f[i]),快速幂解决. #include<bits/stdc+ ...

  6. 洛谷P4317 花神的数论题

    洛谷题目链接 数位$dp$ 我们对$n$进行二进制拆分,于是就阔以像十进制一样数位$dp$了,基本就是套模板.. 接下来是美滋滋的代码时间~~~ #include<iostream> #i ...

  7. 洛谷 P4317 花神的数论题 || bzoj3209

    https://www.lydsy.com/JudgeOnline/problem.php?id=3209 https://www.luogu.org/problemnew/show/P4317 设c ...

  8. bzoj3209 花神的数论题——数位dp

    题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...

  9. [bzoj3209][花神的数论题] (数位dp+费马小定理)

    Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...

  10. BZOJ 3209 花神的数论题 数位DP+数论

    题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...

随机推荐

  1. Sysmon + NXlog构建简单的windows安全监控

    工具: Sysmon (sysmon 5.0) ,NXlog(nxlog-ce-2.9.1716.msi) . Sysmon监控系统并生成windows event log,   NXlog将wind ...

  2. sql loader 控制文件使用十六进制分隔符

    最近项目中使用到了sql loader加载数据文件至数据库,提供的文件中使用了十六进制 7F5E 分隔符,在sql loader中如何加载呢? 经过查询实验后,控制文件ctl内容如下: load da ...

  3. 如何同步删除svn管理的package包目录

    转:https://blog.csdn.net/shiwodecuo/article/details/51754598 eclipse在实际的开发中,当我们的项目由svn进行管理时,若想删除选中的整个 ...

  4. 31 Godoc: documenting Go code 编写良好的文档关于godoc

    Godoc: documenting Go code  编写良好的文档关于godoc 31 March 2011 The Go project takes documentation seriousl ...

  5. python基础--xml和configparse模块

    1)XML模块 xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多. 下面是xml的遍历查询删除修改和生成 # -*- coding:utf-8 -*- __author__ = 's ...

  6. Filter过滤器-JavaWeb三大组件之一

    Servlet.Filter.Listener是JavaWeb的三大组件,给Web开发提供了很大的便利. 什么是Filter? Filter,过滤器.类似与生活中的净水器.空气净化器. JavaWeb ...

  7. 多路复用IO与NIO

    最近在学习NIO相关知识,发现需要掌握的知识点非常多,当做笔记记录就下. 在学NIO之前得先去了解IO模型 (1)同步阻塞IO(Blocking IO):即传统的IO模型. (2)同步非阻塞IO(No ...

  8. Vue select 下拉菜单

    1.html <div id="app-8"> <select v-model="selected"> <option v-for ...

  9. Linux学习笔记:rm删除文件和文件夹

    使用rm命令删除一个文件或者目录 使用rmdir可以删除空文件夹 参数: -i:删除前逐一询问确认 -f:即使原档案属性设为唯读,亦直接删除,无需逐一确认 -r:递归 删除文件可以直接使用rm命令,若 ...

  10. CentOS 6.5通过yum安装和配置MySQL

    0x00 说明 Linux安装MySQL一共有两种方式,一种是下载安装包离线安装,另一种就是通过yum在线安装,这里先介绍在线安装的方式,此方法简单方便,出错最少,但是无法控制安装的MySQL版本,如 ...