hdu4285-circuits
题意
一个 \(n\times m\) 的方格纸,有一些格子不能走。给出一个 \(k\) ,求有多少种方案,用 \(k\) 个不相交,不嵌套 的环覆盖所有可以走的格子。\(n,m\le 12\) 。
分析
若只有 \(k\) 个环的限制,那把它放进状态里就可以了。关键是如何解决不嵌套问题。我们在一个环形成的时候处理嵌套。若这个环被奇数个插头套着,那它至少会被它外层的那对插头形成的环包含,所以不转移。若是偶数个,那么接下来继续这样进行,就一定不会发生嵌套的情况。
为什么呢?考虑刚刚形成的这个环,外面的那层线,由于这个环被偶数个插头对套着,所以外层的线是被奇数个插头对套着,所以它一定不能成环,那么就会消除外面的两层。剩下的情况是一样的。
于是讨论一下,转移即可。
复杂度为 \(O(nm|s|)\) 。
这也算是插头dp棋盘模型的一个结束了。
代码
卡掉了所有的内置 hash_table 。终于手写了一次,因为不想改代码,所以实现了大部分接口,除了 map::iterator 不知道怎么实现,不过也不是很需要。
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ui;
typedef long long giant;
const int maxn=14;
const int maxs=3e5;
const ui haq=3e5+7;
const int q=1e9+7;
inline int Plus(int x,int y) {return ((giant)x+(giant)y)%q;}
inline void Pe(int &x,int y) {x=Plus(x,y);}
int n,m,ned;
bool no[maxn][maxn];
struct Hash {
struct E {
ui v;
int w,nxt;
} e[maxs];
int h[haq],tot;
inline void clear() {tot=0,memset(h,0,sizeof h);}
Hash () {clear();}
inline int& operator [] (ui x) {
ui wh=x%haq;
for (int i=h[wh];i;i=e[i].nxt) if (e[i].v==x) return e[i].w;
e[++tot]=(E){x,0,h[wh]};
return e[h[wh]=tot].w;
}
};
struct Map {
Hash *hs;
Map () {hs=new Hash();}
inline void clear() {hs->clear();}
inline int& operator [] (ui x) {return (*hs)[x];}
inline void swap(Map &o) {
std::swap(hs,o.hs);
}
} f,g;
void get(Map &g) {
for (int i=1;i<=g.hs->tot;++i) printf("[%llu]: %d, ",g.hs->e[i].v,g.hs->e[i].w);
puts("");
}
int mt[maxn];
inline ui get(ui x,int p) {
if (p==m+2) return x>>((m+2)<<1);
return (x>>(p<<1))&3;
}
inline ui mod(ui x,int p,ui d) {
if (p==m+2) {
ui bef=x&((1u<<((m+2)<<1))-1);
return bef+(d<<((m+2)<<1));
}
return (x&(~(3<<(p<<1))))+(d<<(p<<1));
}
inline void match(ui x,int *mt) {
static int sta[maxn];
int top=0;
for (int i=0;i<maxn;++i) mt[i]=0;
for (int i=1;i<=m+1;++i) {
const ui d=get(x,i);
if (d==1) sta[++top]=i; else if (d==2) {
int p=sta[top--];
mt[p]=i,mt[i]=p;
}
}
}
void dec(ui x) {
for (int j=1;j<=m+1;++j) printf("%llu ",get(x,j));
printf("%llu\n",get(x,m+2));
}
void work() {
scanf("%d%d%d",&n,&m,&ned);
memset(no,0,sizeof no);
for (int i=1;i<=n;++i) {
static char s[maxn];
scanf("%s",s+1);
for (int j=1;j<=m;++j) no[i][j]=(s[j]=='*');
}
if (ned>n*m/4) {
puts("0");
return;
}
f.clear(),g.clear();
f[0]=1;
for (int i=1;i<=n;++i) {
f.swap(g),f.clear();
for (int it=1;it<=g.hs->tot;++it) {
const ui &d=g.hs->e[it].v,s=get(d,m+2);
const int &w=g.hs->e[it].w;
if (get(d,m+1)==0) Pe(f[mod(mod(d,m+2,0)<<2,m+2,s)],w);
}
for (int j=1;j<=m;++j) {
f.swap(g),f.clear();
for (int it=1;it<=g.hs->tot;++it) {
const ui &d=g.hs->e[it].v,s=get(d,m+2),e=mod(mod(d,j,0),j+1,0),x=get(d,j),y=get(d,j+1);
const int &w=g.hs->e[it].w;
match(d,mt);
if (no[i][j]) {
if (x==0 && y==0) Pe(f[d],w);
continue;
}
if (x==0 && y==0) Pe(f[mod(mod(e,j,1),j+1,2)],w); else
if (x==0 || y==0) {
Pe(f[mod(e,j,x+y)],w);
Pe(f[mod(e,j+1,x+y)],w);
} else if (x==1 && y==1) Pe(f[mod(e,mt[j+1],1)],w);
else if (x==2 && y==2) Pe(f[mod(e,mt[j],2)],w);
else if (x==2 && y==1) Pe(f[e],w);
else if (x==1 && y==2) {
if (s>=ned) continue;
int cnt=0;
for (int k=1;k<j;++k) cnt+=(bool)get(d,k);
if (~cnt&1) Pe(f[mod(e,m+2,s+1)],w);
}
}
}
}
printf("%d\n",f[mod(0,m+2,ned)]);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
int T;
scanf("%d",&T);
while (T--) work();
return 0;
}
hdu4285-circuits的更多相关文章
- 【hdu4285】 circuits
http://acm.hdu.edu.cn/showproblem.php?pid=4285 (题目链接) 题意 求不不能嵌套的回路个数为K的路径方案数. Solution 插头dp,时限卡得太紧了, ...
- 乱码电路(Garbled circuits)
乱码电路(Garbled circuits)是Andrew Yao教授在上世纪80年代发明的一种很聪明的技术.它可以让两个人针对某个算式来计算答案,而不需要知道他们在计算式所输入的数字. 举个例子说, ...
- HDU 3157 Crazy Circuits(有源汇上下界最小流)
HDU 3157 Crazy Circuits 题目链接 题意:一个电路板,上面有N个接线柱(标号1~N),还有两个电源接线柱 + -.给出一些线路,每一个线路有一个下限值求一个能够让全部部件正常工作 ...
- hdoj 3157 Crazy Circuits 【有下界最小流】
题目:hdoj 3157 Crazy Circuits 题意:如今要制造一个电路板.电路板上有 n 个电子元件,各个元件之间有单向的电流流向.然后有一个 + .电流进入, -- 电流汇入,然后推断能不 ...
- hdu Crazy Circuits
Crazy Circuits 题目: 给出一个电路板,从+极出发到负极. 如今给你电路板上的最小电流限制,要你在电流平衡的时候求得从正极出发的最小电流. 算法: 非常裸的有源汇最小流.安有源汇最大流做 ...
- specialized English for automation-Lesson 2 Basic Circuits of Operational Amplifiers
排版有点乱.... ========================================================================= Operational Ampl ...
- HDU 3157 Crazy Circuits (有源汇上下界最小流)
题意:一个电路板,上面有N个接线柱(标号1~N) 还有两个电源接线柱 + - 然后是 给出M个部件正负极的接线柱和最小电流,求一个可以让所有部件正常工作的总电流. 析:这是一个有源汇有上下界的 ...
- HDU 3157 Crazy Circuits
Crazy Circuits Time Limit: 2000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ...
- 香农的伟大论文《A Symbolic Analysis of Relay and Switching Circuits》
香农在1938年发表的伟大论文A Symbolic Analysis of Relay and Switching Circuits(<对继电器和开关电路中的符号分析>)将开关.继电器.二 ...
- HDU 4285 circuits( 插头dp , k回路 )
circuits Time Limit: 30000/15000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
随机推荐
- Model详解
一.数据库操作 Model操作: 创建数据库表结构(建表) 操作数据库表(增删改查) 做一部分的验证(验证) a.建表 1.表字段 AutoField(Field) - int自增列,必须填入参数 p ...
- 改革春风吹满地,安卓新系统Q上线腾讯WeTest
“刚要适配安卓派,Q就来了.” 3月14日谷歌推出了期待已久的Android Q的首个测试版本Android Q Beta 1 ,这是Android系统推出以来的第十个大版本. 安卓Q相比之前的版本, ...
- springmvc框架开发常用的注解总结
1.@Controller使用:表示表现层中的JavaBean被spring容器管理. 2.@requestMapping使用: a) 在方法上: 标记url到请求方法的映射, 就相当于从一个ur ...
- h5 和之前版本的区别
html5和之前版本的区别就是:以前版本多采用<tr><td>等标签,对于webapp的开发不是很好把控.H5采用<div>等标签直接进行布局(且多了许多标签功能很 ...
- 测试模型---V模型
软件测试&软件工程 软件测试是软件工程不可缺少的一部分. 一.V模型简介 需求分析 验收测试 概要设计 系统测试 详细设计 集成测试 编码 单元测试 (1)单元测试: 又称模块测试,针对软 ...
- Java线程wait和sleep的区别
Java中调用wait方法或者sleep方法都可以让线程进入waitint或者time-waiting状态,但是它们还是 有所不同的: wait是Object中的方法,而sleep则是Thread中的 ...
- 多个EXCEL文件合并成一个
Python的numpy处理起来会比较方便,有空实现一下,这里是Excel内部代码的方式: 合并方法如下: 1.需要把多个excel表都放在同一个文件夹里面,并在这个文件夹里面新建一个excel.如图 ...
- 常用函数-filter、map、reduce、sorted
常用函数 filter map reduce sorted和列表自带sort 待续... 一.filter函数 1.说明 filter()函数接收一个函数 f 和一个可迭代对象,这个函数 f 的作用是 ...
- JavaWeb项目通过调用cmd实现备份数据库的功能
1.别急着上车,先测试一下能否成功调用cmd,可以尝试通过cmd命令打开计算器,代码如下: 2.能成功打开计算器后,证明调用cmd的方法是没错的,现在把cmd命令字符串改成我们备份数据库的 命 ...
- Scrum立会报告+燃尽图(十二月六日总第三十七次):程序功能逻辑优化
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...