好题。给一个无向图,求最少染黑多少个点后,使得任意删除一个点,每一个点都有与至少一个黑点联通。

一开始的确不知道做。看白书,对于一个联通分量,如果它有两个或以上的割点,那么这个分量中间的任何一个点都是不需要染色的。如果这个联通分量恰好有一个割点,那么这个分量需要对其中任何一个非割点染色,如果分量没有割点,那么任意取两个染色即可。

理解也不难,因为最多只是删除一个点,所以假如删除的不是割点,分量里面是绝对联通的,同时还可以通过割点对外面进行联通,如果删除的是割点,那么外面的与里面的不联通,那么这时就需要里面至少有一个黑点了。如果有两个割点,显然,无论你去掉哪一个点,这个分量都是与外面联通的。

有了这个思路题目就简单了。

召唤代码君:

解法一:找出所有的联通分量,判断每一个连通分量的割点数,更新答案。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#define maxn 201000
typedef long long ll;
using namespace std; int first[maxn],next[maxn],to[maxn],edge;//graph
vector<int> bcc[maxn];
int N,bccnum;//the bcc data
int iscut[maxn],belong[maxn],d[maxn],low[maxn],child;
int U[maxn],V[maxn],stack[maxn],top;//stack
int n,m,cas=,T;
ll ans,tot; void _init()
{
ans=,tot=,edge=-,child=bccnum=,top=;
for (int i=; i<=n; i++) first[i]=-,d[i]=low[i]=iscut[i]=belong[i]=;
} void addedge(int uu,int vv)
{
edge++;
to[edge]=vv,next[edge]=first[uu],first[uu]=edge;
edge++;
to[edge]=uu,next[edge]=first[vv],first[vv]=edge;
} void dfs(int cur,int fa)
{
d[cur]=low[cur]=d[fa]+;
for (int i=first[cur]; i!=-; i=next[i])
{
if (to[i]==fa) continue;
if (!d[to[i]])
{
if (fa==) child++;
top++; U[top]=cur,V[top]=to[i];
dfs(to[i],cur);
low[cur]=min(low[cur],low[to[i]]);
if (low[to[i]]>=d[cur])
{
iscut[cur]=;
bccnum++,bcc[bccnum].clear();
for (;;top--)
{
if (belong[U[top]]!=bccnum) belong[U[top]]=bccnum,bcc[bccnum].push_back(U[top]);
if (belong[V[top]]!=bccnum) belong[V[top]]=bccnum,bcc[bccnum].push_back(V[top]);
if (U[top]==cur && V[top]==to[i])
{
top--;
break;
}
}
}
}
else low[cur]=min(low[cur],d[to[i]]);
}
if (fa== && child==) iscut[cur]=;
} int main()
{
while (scanf("%d",&m) && (m))
{
n=-;
for (int i=; i<=m; i++)
{
scanf("%d%d",&U[i],&V[i]);
n=max(n,max(U[i],V[i]));
}
_init();
for (int i=; i<=m; i++) addedge(U[i],V[i]);
for (int i=; i<=n; i++)
if (!d[i])
{
if (first[i]==-)
{
tot++;
continue;
}
child=;
dfs(i,);
}
for (int i=; i<=bccnum; i++)
{
int cutnum=;
for (unsigned j=; j<bcc[i].size(); j++)
if (iscut[bcc[i][j]]) cutnum++;
if (cutnum==)
{
tot++;
ans*=bcc[i].size()-;
}
else if (cutnum==)
{
tot+=;
ll tmp=bcc[i].size();
ans*=tmp*(tmp-)/;
}
}
printf("Case %d: %lld %lld\n",++cas,tot,ans);
}
return ;

解法二:标记所有割点,每次从非割点出发,看能走到多少非割点,而且总共与多少割点相邻,(其实也就是遍历了一遍联通分量,不过实现简单一些)。

#include <iostream>
#include <cstdio>
#include <cstring>
#define maxn 200200
typedef long long ll;
using namespace std; int first[maxn],to[maxn],next[maxn],edge;
int U[maxn],V[maxn];
int d[maxn],low[maxn],tag[maxn];
bool iscut[maxn],vis[maxn];
int n,m,tot,child,sum,cut;
ll ans; void _init()
{
tot=,ans=,edge=-;
for (int i=; i<=n; i++)
first[i]=-,iscut[i]=vis[i]=false,tag[i]=low[i]=d[i]=;
} void addedge(int uu,int vv)
{
edge++;
to[edge]=vv,next[edge]=first[uu],first[uu]=edge;
edge++;
to[edge]=uu,next[edge]=first[vv],first[vv]=edge;
} void dfs(int cur,int fa)
{
d[cur]=low[cur]=d[fa]+;
for (int i=first[cur]; i!=-; i=next[i])
{
if (to[i]==fa) continue;
if (!d[to[i]])
{
if (fa==) child++;
dfs(to[i],cur);
low[cur]=min(low[cur],low[to[i]]);
if (low[to[i]]>=d[cur]) iscut[cur]=true;
}
else low[cur]=min(low[cur],d[to[i]]);
}
if (fa== && child==) iscut[cur]=false;
} void visit(int cur,int TAG)
{
sum++,vis[cur]=true;
for (int i=first[cur]; i!=-; i=next[i])
{
if (iscut[to[i]] && tag[to[i]]!=TAG) cut++,tag[to[i]]=TAG;
else if (!iscut[to[i]] && !vis[to[i]]) visit(to[i],TAG);
}
} int main()
{
int cas=;
while (scanf("%d",&m) && (m))
{
n=;
for (int i=; i<=m; i++) scanf("%d%d",&U[i],&V[i]),n=max(n,max(U[i],V[i]));
_init();
for (int i=; i<=m; i++) addedge(U[i],V[i]); for (int i=; i<=n; i++)
if (!d[i])
{
child=;
dfs(i,);
}
for (int i=; i<=n; i++)
if (!vis[i] && !iscut[i])
{
cut=sum=;
visit(i,i);
if (cut==) tot+=,ans*=(ll)sum*(sum-)/;
else if (cut==) tot++,ans*=sum;
}
printf("Case %d: %d %lld\n",++cas,tot,ans);
}
return ;
}

UVAlive5135_Mining Your Own Business的更多相关文章

  1. 在 SharePoint Server 2016 本地环境中设置 OneDrive for Business

    建议补丁 建议在sharepoint2016打上KB3127940补丁,补丁下载地址 https://support.microsoft.com/zh-cn/kb/3127940 当然不打,也可以用O ...

  2. Java Business Process Management(业务流程管理) 初识环境搭建

    一.简介 (一)什么是jbpm JBPM,全称是Java Business Process Management(业务流程管理),它是覆盖了业务流程管理.工作流.服务协作等领域的一个开源的.灵活的.易 ...

  3. Tips for Planning Your Business Startup

    原文链接:http://domaintree.me/?p=1037 By Robert Thibodeau –  Starting a business can be a very daunting ...

  4. 10 Biggest Business Mistakes That Every Entrepreneur Should Avoid

    原文链接:http://www.huffingtonpost.com/syed-balkhi/10-biggest-business-mista_b_7626978.html When I start ...

  5. 7 COMPELLING REASONS YOU NEED TO START THE BUSINESS YOU’VE ALWAYS WANTED

    原文链接:http://lesseesadvocate.com/7-compelling-reasons-need-start-business-youve-always-wanted/ Don’t ...

  6. business knowledge

    Finance knowledge Trading---At the core of our business model is Trading, which involves the buying ...

  7. Business Unit Lookup in Form

    Just add the below code in lookup() of StringEdit control in Form to get the Business Unit Lookup: p ...

  8. Office 365 系列一 ------- 如何单个安装Office 客户端和Skype for business

    当我们注册好或者购买好 Office 365后,我们的单个用户如何进行在线的.流式的方式安装好我们的客户端,特别是对于我们非IT部门来说,这是一个比较为难的事情, 经常需要我们的IT去到同事的电脑旁边 ...

  9. 更改 Skype for Business Online 的 Sip 地址以匹配UPN

    var appInsights=window.appInsights||function(config){ function r(config){t[config]=function(){var i= ...

随机推荐

  1. [Luogu4921]情侣?给我烧了![错位排列]

    题意 题意很清楚 \滑稽 分析 对于每一个询问 \(k\) ,记 \(g(x)\) 表示 \(x\) 对情侣都错开的方案总数,那么答案可以写成如下形式: \[ {ans}_k= \binom{n}{k ...

  2. SQL Server Management Studio 评估期已过

    SQL2008破解: (1)将SQL安装光盘(或者ISO)放进去运行,进入安装界面. (2)选择“维护”中的“版本升级”,如图: (3)按照版本升级的向导,先输入产品密钥,也就是正式企业版的序列号: ...

  3. 微信小程序——手把手教你写一个微信小程序

    前言 微信小程序年前的跳一跳确实是火了一把,然后呢一直没有时间去实践项目,一直想搞但是工作上不需要所以,嗯嗯嗯嗯嗯emmmmm..... 需求 小程序语音识别,全景图片观看,登录授权,获取个人基本信息 ...

  4. 英文样式教师求职简历免费word模板

    10款英文样式教师求职简历免费word模板,也可用于其他专业和职业,个人免费简历模板,个人简历表免费,个人简历表格. 声明:该简历模板仅用于个人欣赏使用,请勿用于商业用途,谢谢. 下载地址:百度网盘, ...

  5. 一个简单的获取RGB值方式

    操作系统内置了许多小工具,有时候这些小工具也挺有用的,省去了安装一些复杂的软件, 截图 通过键盘PrtSc获取到要取色的图片,然后用画图工具打开 查看 通过画图工具的取色工具,取到你需要的颜色,然后点 ...

  6. win10家庭版没有组策略怎么办?(win10管理员已阻止你运行此应用”解决方法)

    把下面代码复制到TXT文本中,把文本再改成   .cmd  格式保存后以管理员身份运行 @echo off pushd "%~dp0" dir /b C:\Windows\serv ...

  7. allure2 report+ jenkins 使用

    物色了一个挺漂亮的报告生成插件 ——allure. 下面介绍一下这个报告的使用. 1. 添加依赖 <dependencies> <!-- https://mvnrepository. ...

  8. git解决代码提交冲突

    树冲突文件名修改造成的冲突,称为树冲突.比如,A同事把文件改名为A.C,B同事把同一个文件改名为B.C,那么B同事将这两个commit合并时,会产生冲突.如果最终确定用B同事的文件名,那么解决办法如下 ...

  9. 【坚持】Selenium+Python学习记录 DAY9

    2018/05/29 [来源:菜鸟教程](http://www.runoob.com/python3/python3-examples.html) 运算符重载 https://segmentfault ...

  10. GitHub笔记(二)——远程仓库的操作

    二 远程仓库 1 创建联系 第1步:创建SSH Key.在用户主目录下,看看有没有.ssh目录,如果有,再看看这个目录下有没有id_rsa和id_rsa.pub这两个文件,如果已经有了,可直接跳到下一 ...