2124: 等差子序列

Time Limit: 3 Sec  Memory Limit: 259 MB
Submit: 1922  Solved: 714
[Submit][Status][Discuss]

Description

给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3),
使得Ap1,Ap2,Ap3,…ApLen是一个等差序列。
 

Input

输入的第一行包含一个整数T,表示组数。
下接T组数据,每组第一行一个整数N,每组第二行为一个1到N的排列,数字两两之间用空格隔开。
N<=10000,T<=7
 

Output

对于每组数据,如果存在一个等差子序列,则输出一行“Y”,否则输出一行“N”。
 

Sample Input

2
3
1 3 2
3
3 2 1

Sample Output

N
Y
 
思路:
 
线段树神仙操作。。完全想不到怎么用线段树写,看了别人题解看了一天才看懂这操作。。
题目要求存在个数不小于3的等差序列就行了,那么我们只要找到三个数可以组成等差序列就可以了。
我们先从1-n逐步插入,用01表示插入的状态吗如果插入了就标为1,然后只要找出当前值左右两边是否存在
距离相等但状态不同的点,如果有的话那么就存在这么一种等差序列,因为状态不同只有一种情况:一个之前
就已经插入了,一个还没插入,但另一个迟早会插入,所以我们不用管,只要找到这个就可以确定他是等差序列了。
用线段树维护一下hash就行了。
线段树维护的操作比较麻烦,主要就是将这个由01组成的序列由二进制转成10进制来保存,每一步都取下模,如果这
两个数的十进制不同,那他们的二进制肯定也不同。这样就可以判断出答案了。
 
实现代码;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define mid ll m = (l + r) >> 1
const ll M = 1e5+;
const ll md = 1e9+;
ll suml[M<<],sumr[M<<],a[M],pw[M];
void pushup(ll l,ll r,ll rt){
ll len = r - l + ;
ll m = len / ;
suml[rt] = (suml[rt<<]*pw[m]+suml[rt<<|])%md;
sumr[rt] = (sumr[rt<<|]*pw[len-m]+sumr[rt<<])%md;
return ;
} void update(ll p,ll l,ll r,ll rt){
if(l == r){
suml[rt] = sumr[rt] = ;
return ;
}
mid;
if(p <= m) update(p,lson);
else update(p,rson);
pushup(l,r,rt);
} ll queryl(ll L,ll R,ll l,ll r,ll rt){
if(L > R) return ;
if(L == l&&R == r) return suml[rt];
mid;
if(L > m) return queryl(L,R,rson);
else if(R <= m) return queryl(L,R,lson);
else return (queryl(L,m,lson)*pw[R-m]+queryl(m+,R,rson))%md;
} ll queryr(ll L,ll R,ll l,ll r,ll rt){
if(L > R) return ;
if(L == l&&R == r) return sumr[rt];
mid;
if(L > m) return queryr(L,R,rson);
else if(R <= m) return queryr(L,R,lson);
else return (queryr(L,m,lson)+queryr(m+,R,rson)*pw[m-L+])%md;
} int main()
{
ll t,n;
ios::sync_with_stdio();
cin.tie(); cout.tie();
cin>>t;
pw[] = ;
for(ll i = ;i <= ;i++)
pw[i] = (pw[i-]*)%md;
while(t--){
cin>>n;
memset(suml,,sizeof(suml));
memset(sumr,,sizeof(sumr));
memset(a,,sizeof(a));
ll flag = ;
for(ll i = ;i <= n;i ++) cin>>a[i];
for(ll i = ;i <= n;i ++){
ll len = min(a[i]-,n-a[i]);
ll t1 = queryl(a[i]-len,a[i]-,,n,);
ll t2 = queryr(a[i]+,a[i]+len,,n,);
if(t1!=t2){
flag = ;break;
}
update(a[i],,n,);
}
if(!flag) cout<<"Y"<<endl;
else cout<<"N"<<endl;
}
}

bzoj 2124 等差子序列 (线段树维护hash)的更多相关文章

  1. BZOJ 2124: 等差子序列 线段树维护hash

    2124: 等差子序列 Description 给一个1到N的排列{Ai},询问是否存在1<=p1=3),使得Ap1,Ap2,Ap3,…ApLen是一个等差序列. Input 输入的第一行包含一 ...

  2. BZOJ 2124等差子序列 线段树&&hash

    [题目描述 Description] 给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len& ...

  3. bzoj2124: 等差子序列线段树+hash

    bzoj2124: 等差子序列线段树+hash 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2124 思路 找大于3的等差数列其实就是找等于 ...

  4. BZOJ 2124: 等差子序列

    Sol 线段树+Hash. 首先暴力 等差子序列至少3项就可以了,就枚举中项,枚举公差就可以了,只需要一个数在中项前出现,另一个数在中项前没出现过就可以了.复杂度 \(O(n^2)\) 然后我想了一个 ...

  5. cf213E 线段树维护hash

    链接 https://codeforces.com/contest/213/problem/E 题目大意 给出两个排列a.b,长度分别为n.m,你需要计算有多少个x,使 得\(a_1 + x; a_2 ...

  6. MemSQL Start[c]UP 2.0 - Round 1 F - Permutation 思维+线段树维护hash值

    F - Permutation 思路:对于当前的值x, 只需要知道x + k, x - k这两个值是否出现在其左右两侧,又因为每个值只有一个, 所以可以转换成,x+k, x-k在到x所在位置的时候是否 ...

  7. BZOJ2124:等差子序列(线段树,hash)

    Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3), 使得A ...

  8. [bzoj2124]等差子序列——线段树+字符串哈希

    题目大意 给一个1到N的排列\(A_i\),询问是否存在\(p_i\),\(i>=3\),使得\(A_{p_1}, A_{p_2}, ... ,A_{p_len}\)是一个等差序列. 题解 显然 ...

  9. bzoj 4184: shallot (线段树维护线性基)

    题面 \(solution:\) 这一题绝对算的上是一道经典的例题,它向我们诠释了一种新的线段树维护方式(神犇可以跳过了).像这一类需要加入又需要维护删除的问题,我们曾经是遇到过的像莫对,线段树... ...

随机推荐

  1. PHP 用户密码加密函数password_hash

    传统的用户名和密码都采用加盐的方式存储加密信息,盐值也需要存储. 自PHP5.5.0之后,新增加了密码散列算法函数(password_hash),password_hash() 使用足够强度的单向散列 ...

  2. electron快速开始

    初学electron 接触了两周的electron,感觉还不错,以后pc端基本上可以用electron加壳写pc端应用了,可以用nodejs的模块,也可以用es6.7,还可以直接操作系统文件.基本上可 ...

  3. 前端常见算法面试题之 - 从尾到头打印链表[JavaScript解法]

    题目描述 输入一个链表的头结点,从尾到头反过来打印出每个结点的值 实现思路 前端工程师看到这个题目,直接想到的就是,写个while循环来遍历链表,在循环中把节点的值存储在数组中,最后在把数组倒序后,遍 ...

  4. 配置tensorflow环境(anaconda+jupyter notebook)

    很早之前,tensorflow环境之前我也曾装过,但是用的不是很舒服,很多问题都不明所以然.今天想要系统地学习一下tensorflow,于是又重新搭建了一遍,这次还是踩了不少坑.特此写下此文,供有兴趣 ...

  5. 05-matplotlib-直方图

    import numpy as np import matplotlib.pyplot as plt ''' 由于一系列不等的纵形图组成,表示数据分布的情况 例如:某年级同学的身高分布 需要注意与 柱 ...

  6. 随手记录-linux-Shellinabox插件

    Shellinabox 是一个利用 Ajax 技术构建的基于 Web 的远程Terminal 模拟器,也就是说安装了该软件之后,不需要开启 ssh服务,通过 Web 网页就可以对远程主机进行维护操作了 ...

  7. Python之并发编程-IO模型

    目录 一.IO模型介绍二.阻塞IO(blocking IO)三.非阻塞IO(non-blocking IO)四.多路复用IO(IO multiplexing)五.异步IO(Asynchronous I ...

  8. mysql/mybatis之合并两个表的查询结果

    下面这段sql是把两个表中各自符合条件的count值相加,返回结果是两个之和 SELECT sum(result) FROM ( SELECT COUNT(*) result FROM TEST_A ...

  9. Daily Scrum 11.15

    今日完成任务: 1.在回答页面显示用户的相关信息 2.重写了搜索方法,并在自己的Demo网站测试成功 3.修改问题实体属性,加入悬赏积分:并在问题列表页面显示问题悬赏分数 遇到困难:一个是对于学长的搜 ...

  10. VANET

    VANET知识 VANET与普通网络相比,与IOV的区别: VANET中Greedy Routing:基于距离(GPSR):基于速度和角度:基于道路层(TDR): Repair Strategy:Fa ...