[SDOI2018]战略游戏 圆方树,树链剖分
[SDOI2018]战略游戏
这题是道路相遇(题解)的升级版,询问的两个点变成了\(S\)个点。
还是先建出圆方树,考虑对于询问的\(S\)个点,答案就是圆方树上能包含这些点的最小连通块中的圆点个数减去\(S\)。问题变成了怎样求这样的连通块中的圆点个数,直接给结论吧:先搞出树的dfs序,把询问的点按dfs序从小到大排一遍序,每次把答案加上第\(i\)和第\(i + 1\)个点之间的圆点个数,但是不算lca,再加上第\(1\)个和第\(S\)个点之间的圆点个数,然后除以二就得到了这个连通块内不包括整个连通块的lca的圆点个数,可以证明这个连通块内除了lca的所有点都被算了两次,最后判断一下lca是不是圆点,减去\(S\)就是答案。
实测树剖比倍增快很多。
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define R register
#define I inline
#define B 10000000
using namespace std;
const int N = 400003;
char buf[B], *p1, *p2;
I char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, B, stdin), p1 == p2) ? EOF : *p1++; }
I int rd() {
R int f = 0; R char c = gc();
while (c < 48 || c > 57)
c = gc();
while (c > 47 && c < 58)
f = f * 10 + (c ^ 48), c = gc();
return f;
}
int h[N], H[N], sta[N], dfn[N], low[N], vis[N], fa[N], dep[N], siz[N], son[N], top[N], dis[N], q[N], n, c, tim, cnt, stp;
struct edge { int s, g; }e[N], E[N];
I void add(int x, int y) { e[++c] = (edge){h[x], y}, h[x] = c; }
I void Add(int x, int y) { E[++c] = (edge){H[x], y}, H[x] = c; }
I int min(int x, int y) { return x < y ? x : y; }
I int cmp(int x, int y) { return dfn[x] < dfn[y]; }
void dfs(int x) {
vis[sta[++stp] = x] = 1, dfn[x] = low[x] = ++tim;
for (R int i = h[x], y, z; i; i = e[i].s)
if (!dfn[y = e[i].g]) {
dfs(y), low[x] = min(low[x], low[y]);
if (low[y] >= dfn[x]) {
Add(++cnt, x), Add(x, cnt);
do {
vis[z = sta[stp--]] = 0, Add(cnt, z), Add(z, cnt);
} while (z ^ y);
}
}
else
low[x] = min(low[x], dfn[y]);
}
void dfs1(int x, int f) {
fa[x] = f, dep[x] = dep[f] + 1, siz[x] = 1, dis[x] = dis[f] + (x <= n);
for (R int i = H[x], y, m = 0; i; i = E[i].s)
if ((y = E[i].g) ^ f) {
dfs1(y, x), siz[x] += siz[y];
if (siz[y] > m)
m = siz[x], son[x] = y;
}
}
void dfs2(int x, int r) {
dfn[x] = ++tim, top[x] = r;
if (son[x])
dfs2(son[x], r);
for (R int i = H[x], y; i; i = E[i].s)
if ((y = E[i].g) ^ fa[x] && y ^ son[x])
dfs2(y, y);
}
I int lca(int x, int y) {
while (top[x] ^ top[y])
dep[top[x]] > dep[top[y]] ? x = fa[top[x]] : y = fa[top[y]];
return dep[x] < dep[y] ? x : y;
}
I int query(int x, int y) { return dis[x] + dis[y] - (dis[lca(x, y)] << 1); }
int main() {
R int T = rd(), m, Q, S, i, x, y, ans;
while (T--) {
memset(h, 0, sizeof h), memset(H, 0, sizeof H), memset(son, 0, sizeof son), memset(dfn, 0, sizeof dfn);
cnt = n = rd(), m = rd(), c = 0;
for (i = 1; i <= m; ++i)
x = rd(), y = rd(), add(x, y), add(y, x);
c = tim = stp = 0, dfs(1), tim = 0, dfs1(1, 0), dfs2(1, 1), Q = rd();
while (Q--) {
S = rd();
for (i = 1; i <= S; ++i)
q[i] = rd();
sort(q + 1, q + S + 1, cmp), ans = query(q[1], q[S]);
for (i = 2; i <= S; ++i)
ans += query(q[i - 1], q[i]);
printf("%d\n", (ans >> 1) - S + (lca(q[1], q[S]) <= n));
}
}
return 0;
}
[SDOI2018]战略游戏 圆方树,树链剖分的更多相关文章
- bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树)
bzoj5315/luoguP4517 [SDOI2018]战略游戏(圆方树,虚树) bzoj Luogu 题目描述略(太长了) 题解时间 切掉一个点,连通性变化. 上圆方树. $ \sum |S| ...
- Luogu4606 SDOI2018 战略游戏 圆方树、虚树、链并
传送门 弱化版 考虑到去掉一个点使得存在两个点不连通的形式类似割点,不难想到建立圆方树.那么在圆方树上对于给出的关键点建立虚树之后,我们需要求的就是虚树路径上所有圆点的数量减去关键点的数量. 因为没有 ...
- BZOJ5329:[SDOI2018]战略游戏(圆方树,虚树)
Description 省选临近,放飞自我的小Q无心刷题,于是怂恿小C和他一起颓废,玩起了一款战略游戏. 这款战略游戏的地图由n个城市以及m条连接这些城市的双向道路构成,并且从任意一个城市出发总能沿着 ...
- BZOJ.5329.[SDOI2018]战略游戏(圆方树 虚树)
题目链接 显然先建圆方树,方点权值为0圆点权值为1,两点间的答案就是路径权值和减去起点终点. 对于询问,显然可以建虚树.但是只需要计算两关键点间路径权值,所以不需要建出虚树.统计DFS序相邻的两关键点 ...
- Luogu P4606 [SDOI2018] 战略游戏 圆方树 虚树
https://www.luogu.org/problemnew/show/P4606 把原来的图的点双联通分量缩点(每个双联通分量建一个点,每个割点再建一个点)(用符合逻辑的方式)建一棵树(我最开始 ...
- [bzoj5329] P4606 [SDOI2018]战略游戏
P4606 [SDOI2018]战略游戏:广义圆方树 其实会了圆方树就不难,达不到黑,最多算个紫 那个转换到圆方树上以后的处理方法,画画图就能看出来,所以做图论题一定要多画图,并把图画清楚点啊!! 但 ...
- 洛谷P4606 [SDOI2018]战略游戏 [广义圆方树]
传送门 思路 先考虑两点如何使他们不连通. 显然路径上所有的割点都满足条件. 多个点呢?也是这样的. 于是可以想到圆方树.一个点集的答案就是它的虚树里圆点个数减去点集大小. 可以把点按dfs序排序,然 ...
- 洛谷P4606 [SDOI2018]战略游戏 【圆方树 + 虚树】
题目链接 洛谷P4606 双倍经验:弱化版 题解 两点之间必经的点就是圆方树上两点之间的圆点 所以只需建出圆方树 每次询问建出虚树,统计一下虚树边上有多少圆点即可 还要讨论一下经不经过根\(1\)的情 ...
- [SDOI2018]战略游戏(圆方树+虚树)
喜闻乐见的圆方树+虚树 图上不好做,先建出圆方树. 然后答案就是没被选到的且至少有两条边可以走到被选中的点的圆点的数量. 语文不好,但结论画画图即可得出. 然后套路建出虚树. 发现在虚树上DP可以得出 ...
随机推荐
- java并发之同步辅助类CyclicBarrier和CountDownLatch
CyclicBarrier 的字面意思是可循环使用(Cyclic)的屏障(Barrier).它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门, ...
- UNIX高级环境编程(8)进程环境(Process Environment)- 进程的启动和退出、内存布局、环境变量列表
在学习进程控制相关知识之前,我们需要了解一个单进程的运行环境. 本章我们将了解一下的内容: 程序运行时,main函数是如何被调用的: 命令行参数是如何被传入到程序中的: 一个典型的内存布局是怎样的: ...
- SparkSql实现Mysql到hive的数据流动
今天去面试了一波,因为调度系统采用了SparkSql实现数据从Mysql到hive,在这一点上面试官很明显很不满我对于Spark的理解,19年的第一个面试就这么挂了. 有问题不怕,怕的是知道了问题还得 ...
- 铁乐学python_Day41_线程01
线程概念的引入背景 进程 之前我们已经了解了操作系统中进程的概念,程序并不能单独运行,只有将程序装载到内存中,系统为它分配资源才能运行,而这种执行的程序就称之为进程. 程序和进程的区别就在于: 程序是 ...
- 【C#】#103 动态修改App.config配置文件
对 C/S模式 下的 App.config 配置文件的AppSetting节点,支持配置信息现改现用,并可以持久保存. 一. 先了解一下如何获取 配置信息里面的内容[获取配置信息推荐使用这个] 1.1 ...
- 【名称解释】#001 IIS名词解释
关于[名称解释]类型的文章,会慢慢更新. 2015.02.06 更 应用程序池: 应用程序池是将一个或多个应用程序链接到一个或多个工作进程集合的配置. 因为应用程序池中的应用程序与其他应用程序被工作进 ...
- C++ 课堂作业1.0
c++第一次课堂作业点这里 题目要求:输入半径,计算圆的面积,在调用外部函数,无需使用类.
- Ceph块存储介绍
1. 块存储是什么 块存储简称RBD(RADOS Block Device),是一种有序的字节序块,也是在Ceph三大存储类型中最为常用的存储方式 ,Ceph的块存储是基于RADOS的,因此它也借助R ...
- AbstractApplicationContext 笔记
一.这个类的属性 public abstract class AbstractApplicationContext extends DefaultResourceLoader implements C ...
- PostgreSQL学习----命令或问题小结
PostgreSQL学习--命令或问题小结 小序 接触PostgreSQL也有好长时间了,知识不总结梳理,似乎总不是自己的,继续努力吧少年!以此记录我的软件工艺之路! 1,查看模式搜索路径 SHOW ...