原题链接,不是权限题

题目大意

有\(n\)个模板串,让你构造一个尽量长的串,使得这个串中任意一个长度为\(k\)的子串都是至少一个模板串的子串

题解

可以先看一下这道题 [POI2000]病毒

虽然是个\(AC\)自动机,不过思路很像

对于这道题,我们只需要把广义\(SAM\)建出来,然后在那些只经过\(maxlen\geqslant k\)的结点的路径中选一个最长的就行了。最后一步可以用拓扑排序来完成

拓扑建边时可以直接向\(fail\)连边,而不是把儿子补全(像\(AC\)自动机那样\(ch[u][c]=ch[fail[u]][c]\)),这样能降低复杂度

最后如果出现环,就输出\(INF\),否则求最长路径,注意特判所有结点的\(maxlen\)都小于\(k\)的情况,题目最下方有说明

丑的一批的代码奉上:

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <ctime>
#include <queue>
#include <map>
#include <set> using namespace std; #define ull unsigned long long
#define pii pair<int, int>
#define mii map<int, int>
#define uint unsigned int
#define lbd lower_bound
#define ubd upper_bound
#define ll long long
#define mp make_pair
#define pb push_back
#define re register
#define il inline #define N 100000 int n, k;
char s[N+5];
int root, nid, last, ch[2*N+5][26], fail[2*N+5], len[2*N+5];
int in[2*N+5], d[2*N+5];
vector<pii> G[2*N+5]; void clear() {
root = nid = 1;
memset(ch[1], 0, sizeof ch[1]);
memset(fail, 0, sizeof fail);
memset(in, 0, sizeof in);
memset(d, 0, sizeof d);
// memset(len, 0, sizeof len);
G[1].clear(), G[2*N+2].clear(), G[2*N+3].clear();
} void init() {
last = root;
} void extend(int c) {
int cur = ++nid;
memset(ch[cur], 0, sizeof ch[cur]);
G[cur].clear();
len[cur] = len[last]+1;
while(last && !ch[last][c]) ch[last][c] = cur, last = fail[last];
if(!last) fail[cur] = root;
else {
int p = last, q = ch[last][c];
if(len[q] == len[p]+1) fail[cur] = q;
else {
int clone = ++nid;
G[clone].clear();
len[clone] = len[p]+1;
for(int i = 0; i < 26; ++i) ch[clone][i] = ch[q][i];
fail[clone] = fail[q], fail[q] = fail[cur] = clone;
while(p && ch[p][c] == q) ch[p][c] = clone, p = fail[p];
}
}
last = cur;
} int topo() {
int S = 2*N+2, T = 2*N+3, ans = 0, cnt = 0;
d[T] = 0;
G[S].clear();
for(int i = 1; i <= nid; ++i)
if(len[i] == k-1) {
for(int j = 0; j < 26; ++j) if(ch[i][j]) G[i].pb(mp(ch[i][j], 1)), in[ch[i][j]]++;
in[i]++;
G[S].pb(mp(i, len[i]));
}
else if(len[i] >= k) {
for(int j = 0; j < 26; ++j) if(ch[i][j]) G[i].pb(mp(ch[i][j], 1)), in[ch[i][j]]++;
if(fail[i] && len[fail[i]] >= k-1) G[i].pb(mp(fail[i], 0)), in[fail[i]]++;
G[i].pb(mp(T, 0));
G[S].pb(mp(i, len[i]));
in[T]++, in[i]++;
cnt++;
}
if(!cnt) return k-1;
queue<int> q;
q.push(S);
while(!q.empty()) {
int u = q.front(); q.pop();
ans = max(ans, d[u]);
for(int i = 0; i < G[u].size(); ++i) {
int v = G[u][i].first, w = G[u][i].second;
in[v]--;
d[v] = max(d[v], d[u]+w);
if(!in[v]) q.push(v);
}
}
for(int i = 1; i <= nid; ++i) if(in[i]) return -1;
return ans;
} int main() {
while(~scanf("%d%d", &n, &k)) {
clear();
for(int i = 1; i <= n; ++i) {
scanf("%s", s);
int len = strlen(s);
init();
for(int j = 0; j < len; ++j) extend(s[j]-'a');
}
int ans = topo();
if(ans == -1) printf("INF\n");
else printf("%d\n", ans);
}
return 0;
}

BZOJ5261 Rhyme--广义SAM+拓扑排序的更多相关文章

  1. BZOJ2938 [Poi2000]病毒 和 BZOJ5261 Rhyme

    [Poi2000]病毒 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码 ...

  2. CodeForces - 666E: Forensic Examination (广义SAM 线段树合并)

    题意:给定字符串S,然后M个字符串T.Q次询问,每次给出(L,R,l,r),问S[l,r]在L到R这些T字符串中,在哪个串出现最多,以及次数. 思路:把所有串建立SAM,然后可以通过倍增走到[l,r] ...

  3. 【BZOJ 3473】 字符串 (后缀数组+RMQ+二分 | 广义SAM)

    3473: 字符串 Description 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串? Input 第一行两个整数n,k. 接下来n行每行一个字符串 ...

  4. Luogu P3181 [HAOI2016]找相同字符 广义$SAM$

    题目链接 \(Click\) \(Here\) 设一个串\(s\)在\(A\)中出现\(cnt[s][1]\)次,在\(B\)中出现\(cnt[s][2]\)次,我们要求的就是: \[\sum cnt ...

  5. CF666E Forensic Examination 广义SAM、线段树合并、倍增、扫描线

    传送门 朴素想法:对\(M\)个匹配串\(T_1,...,T_M\)建立广义SAM,对于每一次询问,找到这个SAM上\(S[pl...pr]\)对应的状态,然后计算出对于每一个\(i \in [l,r ...

  6. 洛谷 P3975 / loj 2102 [TJOI2015] 弦论 题解【后缀自动机】【拓扑排序】

    后缀自动机入门. 题目描述 为了提高智商,ZJY 开始学习弦论. 这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为 \(n\) 的字符串,求出它的第 \ ...

  7. 【后缀自动机】【拓扑排序】【动态规划】hihocoder1457 后缀自动机四·重复旋律7

    解题方法提示 小Hi:我们已经学习了后缀自动机,今天我们再来看这道有意思的题. 小Ho:好!这道题目让我们求的是若干的数字串所有不同子串的和. 小Hi:你能不能结合后缀自动机的性质来思考如何解决本题? ...

  8. LOJ3049 [十二省联考2019] 字符串问题 【后缀自动机】【倍增】【拓扑排序】

    题目分析: 建出后缀自动机,然后把A串用倍增定位到后缀自动机上,再把B串用倍增定位到后缀自动机上. SAM上每个点上的A串根据长度从小到大排序,建点,依次连边. 再对于SAM上面每个点,连到儿子的边, ...

  9. Luogu5284 十二省联考2019字符串问题(后缀树+拓扑排序)

    对反串建SAM弄出后缀树,每个b串通过倍增定位其在后缀树上对应的节点,根据其长度将节点拆开.然后每个a串也找到对应的节点,由该节点向表示a串的节点连边,再把所给的边连上跑拓扑排序即可. #includ ...

随机推荐

  1. 【wif系列】C#之单例模式(Singleton Pattern)最佳实践

    目录 前言 单例基类 单例提供者 总结 前言 在上一篇译文--<深入理解C#--在C#中实现单例模式>中,对在C#中实现单例模式进行了详细阐述.我们在日常的开发中可以采用解决方案4或解决方 ...

  2. MongoDB学习(操作集合中的文档)

    文档概念 文档的数据结构和JSON基本一样. 所有存储在集合中的数据都是BSON格式. BSON是一种类json的一种二进制形式的存储格式,简称Binary JSON. 插入文档 insert()方法 ...

  3. WEB前端需要了解的XML相关基础知识

    什么是 XML? XML 指可扩展标记语言(EXtensible Markup Language) XML 是一种标记语言,很类似 HTML XML 的设计宗旨是传输数据,而非显示数据 XML 标签没 ...

  4. wordpress的excerpt()函数

    问题:在wordpres中的single页面,本身引用的<?php the_excerpt(); ?>,但是在页面上显示的却是文章的内容 原因:the_excerpt(); 在excerp ...

  5. centos7新增硬盘

    centos7新增硬盘 步骤:分区---格式化---挂载(配置开机自动挂载) 1.分区 fdisk -l 查看硬盘信息确认新硬盘的名称(以/dev/sdb为例) fdisk /dev/sdb  管理硬 ...

  6. 利用ZYNQ SOC快速打开算法验证通路(6)——利用AXI总线实时配置sysGen子系统

    利用ZYNQ验证算法的一大优势在于,可以在上位机发送指令借助CPU的控制能力和C语言易开发特点,实时配置算法模块的工作模式.参数等对来对其算法模块性能进行全面的评估.最重要的是无需重新综合硬件模块. ...

  7. 如莲开发平台(MIS基础框架、Java技术、B/S结构)

    关于     「如莲」是一套MIS类系统基础框架,主要用于各类“管理信息系统”的开发,也适合做网站后台开发.可省去开发时的框架搭建.规范约定.权限管理等基础工作,直接专注于业务功能实现.     「如 ...

  8. Ubuntu server 16.04的安装 以及配置(服务器版)

    1.在电脑上下载最新版本的Ubuntu服务器ISO映像,刻录到CD或创建一个可启动的USB盘. 2.视情况而定,进入到服务器的boot界面,把cd或者usb设置为启动第一项 3.开始安装   1)Ub ...

  9. openstack第二章:glance

    第二篇glance— 镜像服务 一.glance介绍:              Glance是Openstack项目中负责镜像管理的模块,其功能包括虚拟机镜像的查找.注册和检索等. Glance提供 ...

  10. MySQL数据库执行计划(简单版)

    +++++++++++++++++++++++++++++++++++++++++++标题:MySQL数据库执行计划简单版时间:2019年2月25日内容:MySQL数据库执行计划简单版重点:MySQL ...