Problem Description
Josephina is a clever girl and addicted to Machine Learning recently. She
pays much attention to a method called Linear Discriminant Analysis, which
has many interesting properties.
In order to test the algorithm's efficiency, she collects many datasets.
What's more, each data is divided into two parts: training data and test
data. She gets the parameters of the model on training data and test the
model on test data. To her surprise, she finds each dataset's test error
curve is just a parabolic curve. A parabolic curve corresponds to a
quadratic function. In mathematics, a quadratic function is a polynomial
function of the form f(x) = ax2 + bx + c. The
quadratic will degrade to linear function if a = 0.

It's very easy to calculate the minimal error if there is only one test
error curve. However, there are several datasets, which means Josephina
will obtain many parabolic curves. Josephina wants to get the tuned
parameters that make the best performance on
all datasets. So she should take all error curves into account, i.e.,
she has to deal with many quadric functions and make a new error
definition to represent the total error. Now, she focuses on the
following new function's minimum which related to multiple
quadric functions. The new function F(x) is defined as follows: F(x) =
max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric
function. Josephina wonders the minimum of F(x). Unfortunately, it's too
hard for her to solve this problem. As a
super programmer, can you help her?

Input
The input contains multiple test cases. The first line is the number of
cases T (T < 100). Each case begins with a number n (n ≤ 10000).
Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b
(|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding
coefficients of a quadratic function.
Output
For each test case, output the answer in a line. Round to 4 digits after the decimal point.
Sample Input
2
1
2 0 0
2
2 0 0
2 -4 2
Sample Output
0.0000
0.5000
画图理解一下,
几个下凸函数取max仍然是下凸函数
然后三分就行了
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
double eps=1e-;
double a[],b[],c[];
int n;
double cal(double x)
{int i;
double tmp=a[]*x*x+b[]*x+c[];
for (i=;i<=n;i++)
{
tmp=max(tmp,a[i]*x*x+b[i]*x+c[i]);
}
return tmp;
}
int main()
{int T,i;
cin>>T;
while (T--)
{
cin>>n;
for (i=;i<=n;i++)
{
scanf("%lf%lf%lf",&a[i],&b[i],&c[i]);
}
int t=;
double l=,r=,ans=;
while (t--)
{
double mid1=l+(r-l)/3.0,mid2=r-(r-l)/3.0;
if (cal(mid1)<cal(mid2)) r=mid2;
else l=mid1;
}
printf("%.4lf\n",cal(l));
}
}

UVA 5009 Error Curves的更多相关文章

  1. UVA 1476 - Error Curves(三分法)

    UVA 1476 1476 - Error Curves 题目链接 题意:给几条下凹二次函数曲线.然后问[0,1000]全部位置中,每一个位置的值为曲线中最大值的值,问全部位置的最小值是多少 思路:三 ...

  2. 【单峰函数,三分搜索算法(Ternary_Search)】UVa 1476 - Error Curves

    Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...

  3. UVA - 1476 Error Curves 三分

                                           Error Curves Josephina is a clever girl and addicted to Machi ...

  4. UVALive 5009 Error Curves 三分

    //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include& ...

  5. uva 1476 - Error Curves

    对x的坐标三分: #include<cstdio> #include<algorithm> #define maxn 10009 using namespace std; do ...

  6. LA 5009 (HDU 3714) Error Curves (三分)

    Error Curves Time Limit:3000MS    Memory Limit:0KB    64bit IO Format:%lld & %llu SubmitStatusPr ...

  7. Error Curves(2010成都现场赛题)

    F - Error Curves Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Descript ...

  8. Error Curves HDU - 3714

    Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...

  9. hdu 3714 Error Curves(三分)

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tot ...

随机推荐

  1. JavaScript(第六天)【函数】

    函数是定义一次但却可以调用或执行任意多次的一段JS代码.函数有时会有参数,即函数被调用时指定了值的局部变量.函数常常使用这些参数来计算一个返回值,这个值也成为函数调用表达式的值. 一.函数声明   函 ...

  2. 记录python接口自动化测试--主函数(第六目)

    把操作excel的方法封装好后,就可以用准备好的接口用例来循环遍历了 我的接口测试用例如下 主函数代码: run_handle_excel.py# coding:utf-8 from base.run ...

  3. 1013团队Beta冲刺day3

    项目进展 李明皇 今天解决的进度 完善了程序的运行逻辑(消息提示框等) 明天安排 前后端联动调试 林翔 今天解决的进度 向微信官方申请登录验证session以维护登录态 明天安排 继续完成维护登录态 ...

  4. 201621123050 《Java程序设计》第3周学习总结

    1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识点组织起来.请使用工具画出本周学习到的知识点及知识点之间的联系.步骤如下: 1.1 写出你 ...

  5. 网页设计入门<一>

    俗话说:技多不压身.实习周,网页设计是之一,边学边总结... 本次网页设计基于Adobe Dreamweaver CS6开发平台,根据实习老师的暴力指导,为什么说暴力呢? 没有基础,没有预告,打开软件 ...

  6. 20145237 《Java程序设计》第七周学习总结

    20145237 <Java程序设计>第七周学习总结 教材学习内容总结 第十三章   一.认识时间与日期   1.时间的度量   在正式认识Java提供了哪些时间处理API之前,得先来了解 ...

  7. Java8-如何构建一个Stream

    Stream的创建方式有很多种,除了最常见的集合创建,还有其他几种方式. List转Stream List继承自Collection接口,而Collection提供了stream()方法. List& ...

  8. 【bug清除】Surface Pro系列使用Drawboard PDF出现手写偏移、卡顿、延迟现象的解决方式

    最近自己新买的New Surface Pro在使用Drawboard PDF时,出现了性能问题,即笔迹延迟偏移,卡顿的问题. 排查驱动问题之后,确认解决方案如下: 将Surface的电池调到性能模式, ...

  9. MongoDb进阶实践之三 MongoDB查询命令详述

    一.引言           上一篇文章我们已经介绍了MongoDB数据库的最基本操作,包括数据库的创建.使用和删除数据库,文档的操作也涉及到了文档的创建.删除.更新和查询,当然也包括集合的创建.重命 ...

  10. 第1章 什么是TCP-IP

    第1章 什么是TCP-IP 什么是网络 网络是计算机或类似计算机的设备之间通过常用传输介质进行通信的集合.通常情况下,传输介质是绝缘的金属导线, 它用来在计算机之间携带电脉冲,介质也可以是电话线,甚至 ...