Description

Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking and swinging from the trapeze (and their last attempt at firing a cow out of a cannon met with a dismal failure). Thus, they have decided to practice performing acrobatic stunts.

The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves ithin this stack.

Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows.

解题报告:

各种乱搞+贪心WA一片,最后按w[i]+s[i]从大到小排序就莫名对了,后来仔细一想还是可靠的,假设A在B上面,那么 \(rist_A=Sum-w_A-w_B-s_A\) 并且交换A,B位置之后上面位置的risk都不变,但是下面的就会变成\(Sum_B-w_A-s_A\),所以贪心策略就是把 \(w_i+s_i\)最大的放在最下面,以此类推

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=5e4+5;
int w[N],s[N],a[N];
bool comp(int i,int j){
return w[i]+s[i]>w[j]+s[j];
}
void work()
{
int n;ll tot=0;
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",&w[i],&s[i]);
a[i]=i;tot+=w[i];
}
sort(a+1,a+n+1,comp);
int ans=-2e9;
for(int i=1;i<=n;i++){
ans=Max(ans,tot-w[a[i]]-s[a[i]]);
tot-=w[a[i]];
}
printf("%d\n",ans);
} int main()
{
work();
return 0;
}

POJ 3045 Cow Acrobats的更多相关文章

  1. POJ 3045 Cow Acrobats (贪心)

    POJ 3045 Cow Acrobats 这是个贪心的题目,和网上的很多题解略有不同,我的贪心是从最下层开始,每次找到能使该层的牛的风险最小的方案, 记录风险值,上移一层,继续贪心. 最后从遍历每一 ...

  2. poj 3045 Cow Acrobats(二分搜索?)

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  3. POJ - 3045 Cow Acrobats (二分,或者贪心)

    一开始是往二分上去想的,如果risk是x,题目要求则可以转化为一个不等式,Si + x >= sigma Wj ,j表示安排在i号牛上面的牛的编号. 如果考虑最下面的牛那么就可以写成 Si + ...

  4. POJ 3045 Cow Acrobats (最大化最小值)

    题目链接:click here~~ [题目大意] 给你n头牛叠罗汉.每头都有自己的重量w和力量s,承受的风险数rank就是该牛上面全部牛的总重量减去该牛自身的力量,题目要求设计一个方案使得全部牛里面风 ...

  5. POJ3045 Cow Acrobats —— 思维证明

    题目链接:http://poj.org/problem?id=3045 Cow Acrobats Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  6. 【POJ - 3045】Cow Acrobats (贪心)

    Cow Acrobats Descriptions 农夫的N只牛(1<=n<=50,000)决定练习特技表演. 特技表演如下:站在对方的头顶上,形成一个垂直的高度. 每头牛都有重量(1 & ...

  7. 【POJ3045】Cow Acrobats(贪心)

    BUPT2017 wintertraining(16) #4 B POJ - 3045 题意 n(1 <= N <= 50,000) 个牛,重wi (1 <= W_i <= 1 ...

  8. POJ 3045

    Cow Acrobats Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2302   Accepted: 912 Descr ...

  9. BZOJ1629: [Usaco2007 Demo]Cow Acrobats

    1629: [Usaco2007 Demo]Cow Acrobats Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 601  Solved: 305[Su ...

随机推荐

  1. webView调用系统地图,电话,和跳转链接的方法

    webView.dataDetectorTypes = UIDataDetectorTypePhoneNumber | UIDataDetectorTypeLink | UIDataDetectorT ...

  2. UVA 10622 Perfect P-th Powers

    https://vjudge.net/problem/UVA-10622 将n分解质因数,指数的gcd就是答案 如果n是负数,将答案除2至奇数 原理:(a*b)^p=a^p*b^p #include& ...

  3. Hyper-V虚拟机故障导致数据文件丢失的数据恢复全过程

    简介: 由于MD3200存储中虚拟机的数据文件丢失,导致整个Hyper-V服务瘫痪,虚拟机无法使用,故障环境为Windows Server 2012服务器,系统中部署了Hyper-V虚拟机环境,虚拟机 ...

  4. nyoj Color the fence

    Color the fence 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 Tom has fallen in love with Mary. Now Tom w ...

  5. 利用封装、继承对Java代码进行优化

    注:本文实例分别可以在oldcastle(未优化的代码)和newcastle(优化后的代码)中查看,网址见文末 城堡游戏: 城堡中有多个房间,用户通过输入north, south, east, wes ...

  6. SpringMVC之数据传递一

    之前的博客中也说了,mvc中数据传递是最主要的一部分,从url到Controller.从view到Controller.Controller到view以及Controller之间的数据传递.今天主要学 ...

  7. wordpress怎么禁止文章复制

    登陆你的网站后台--点击菜单栏的"外观"--点击"编辑"--在右侧,找到footer.php,打开它--在</body>之前加入以下代码: 1.禁止 ...

  8. emqtt 试用(七)追踪

    追踪 EMQ 消息服务器支持追踪来自某个客户端(Client)的全部报文,或者发布到某个主题(Topic)的全部消息. 追踪客户端(Client): ./bin/emqttd_ctl trace cl ...

  9. 新概念英语(1-133)Sensational news!

    Lesson 133 Sensational news! 爆炸性新闻! Listen to the tape then answer this question. What reason did Ka ...

  10. linux下的Shell编程(3)shell里的流程控制

    if 语句 if 表达式如果条件命令组为真,则执行 then 后的部分.标准形式: if 判断命令,可以有很多个,真假取最后的返回值 then 如果前述为真做什么 [ # 方括号代表可选,别真打进去了 ...